[
https://issues.apache.org/jira/browse/SPARK-19255?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Ashok Kumar updated SPARK-19255:
--------------------------------
Attachment: spark_sqllistener_oom.png
Attached snapshot is heap dump profiled by eclipse mat
> SQL Listener is causing out of memory, in case of large no of shuffle
> partition
> -------------------------------------------------------------------------------
>
> Key: SPARK-19255
> URL: https://issues.apache.org/jira/browse/SPARK-19255
> Project: Spark
> Issue Type: Improvement
> Components: SQL
> Environment: Linux
> Reporter: Ashok Kumar
> Priority: Minor
> Attachments: spark_sqllistener_oom.png
>
>
> Test steps.
> 1.CREATE TABLE sample(imei string,age int,task bigint,num double,level
> decimal(10,3),productdate timestamp,name string,point int)USING
> com.databricks.spark.csv OPTIONS (path "data.csv", header "false",
> inferSchema "false");
> 2. set spark.sql.shuffle.partitions=100000;
> 3. select count(*) from (select task,sum(age) from sample group by task) t;
> After running above query, number of objects in map variable
> _stageIdToStageMetrics has increase to very high number , this increment is
> proportional to number of shuffle partition.
> Please have a look at attached screenshot
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]