Liang-Chi Hsieh created SPARK-19425:
---------------------------------------

             Summary: Make df.except work for UDT
                 Key: SPARK-19425
                 URL: https://issues.apache.org/jira/browse/SPARK-19425
             Project: Spark
          Issue Type: Bug
          Components: SQL
    Affects Versions: 2.1.0
            Reporter: Liang-Chi Hsieh


DataFrame.except doesn't work for UDT columns. It is because 
ExtractEquiJoinKeys will run Literal.default against UDT. However, we don't 
handle UDT in Literal.default and an exception will throw like:

java.lang.RuntimeException: no default for type 
org.apache.spark.ml.linalg.VectorUDT@3bfc3ba7
  at 
org.apache.spark.sql.catalyst.expressions.Literal$.default(literals.scala:179)
  at 
org.apache.spark.sql.catalyst.planning.ExtractEquiJoinKeys$$anonfun$4.apply(patterns.scala:117)
  at 
org.apache.spark.sql.catalyst.planning.ExtractEquiJoinKeys$$anonfun$4.apply(patterns.scala:110)

We should simply skip using the columns whose types don't provide default 
literal as joining key.



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to