[ 
https://issues.apache.org/jira/browse/SPARK-19425?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Liang-Chi Hsieh updated SPARK-19425:
------------------------------------
    Summary: Make ExtractEquiJoinKeys support UDT columns  (was: Make df.except 
work for UDT)

> Make ExtractEquiJoinKeys support UDT columns
> --------------------------------------------
>
>                 Key: SPARK-19425
>                 URL: https://issues.apache.org/jira/browse/SPARK-19425
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.1.0
>            Reporter: Liang-Chi Hsieh
>
> DataFrame.except doesn't work for UDT columns. It is because 
> ExtractEquiJoinKeys will run Literal.default against UDT. However, we don't 
> handle UDT in Literal.default and an exception will throw like:
> java.lang.RuntimeException: no default for type 
> org.apache.spark.ml.linalg.VectorUDT@3bfc3ba7
>   at 
> org.apache.spark.sql.catalyst.expressions.Literal$.default(literals.scala:179)
>   at 
> org.apache.spark.sql.catalyst.planning.ExtractEquiJoinKeys$$anonfun$4.apply(patterns.scala:117)
>   at 
> org.apache.spark.sql.catalyst.planning.ExtractEquiJoinKeys$$anonfun$4.apply(patterns.scala:110)
> We should simply skip using the columns whose types don't provide default 
> literal as joining key.



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to