[ 
https://issues.apache.org/jira/browse/SPARK-19629?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Navige updated SPARK-19629:
---------------------------
    Description: 
Running the following two examples will lead to different results depending on 
whether the code is run using Spark 1.6 or Spark 2.1. 

What does the example do?
===========================
- The code creates an exemplary dataframe with random data. 
- The dataframe is repartitioned and stored to disk. 
- Then the dataframe is re-read from disk.
- The number of partitions of the dataframe is considered.

What is the expected behaviour?
===========================
The number of partitions specified when storing the dataframe should be the 
same as when re-loading the dataframe from disk.

On Spark 1.6 the partitioning is kept, i.e., the code example will return 10 
partitions as specified using npartitions; on Spark 2.1 the number of 
partitions will equal the number of local nodes specified when starting Spark 
(using local[X] as master).

Minimal code example
===========================
{code:none}
# run on Spark 1.6
import scala.util.Random
import org.apache.spark.sql.types.{StructField, StructType, FloatType}
import org.apache.spark.sql.Row
 val rdd = sc.parallelize(Seq.fill(100)(Row(Seq(Random.nextFloat()): _*)))
val df = sqlContext.createDataFrame(rdd, StructType(Seq(StructField("test", 
FloatType))))
val npartitions = 10
df.repartition(npartitions).write.parquet("/tmp/test1")
val read = sqlContext.read.parquet("/tmp/test1")
assert(npartitions == read.rdd.getNumPartitions) //true on Spark 1.6
{code}

{code:none}
# run on Spark 2.1
import scala.util.Random
import org.apache.spark.sql.types.{StructField, StructType, FloatType}
import org.apache.spark.sql.Row
val rdd = sc.parallelize(Seq.fill(100)(Row(Seq(Random.nextFloat()): _*)))
val df = spark.sqlContext.createDataFrame(rdd, 
StructType(Seq(StructField("test", FloatType))))
val npartitions = 10
df.repartition(npartitions).write.parquet("/tmp/test1")
val read = spark.sqlContext.read.parquet("/tmp/test1")
assert(npartitions == read.rdd.getNumPartitions) //false on Spark 2.1
{code}

  was:
Running the following two examples will lead to different results depending on 
whether the code is run using Spark 1.6 or Spark 2.1. 

What does the example do?
===========================
- The code creates an exemplary dataframe with random data. 
- The dataframe is repartitioned and stored to disk. 
- Then the dataframe is re-read from disk.
- The number of partitions of the dataframe is considered.

What is the expected behaviour?
===========================
The number of partitions specified when storing the dataframe should be the 
same as when re-loading the dataframe from disk.

On Spark 1.6 the partitioning is kept, i.e., the code example will return 10 
partitions as specified using npartitions; on Spark 2.1 the number of 
partitions will equal the number of local nodes specified when starting Spark 
(using local[X] as master).

Minimal code example
===========================
{code:scala}
# run on Spark 1.6
import scala.util.Random
import org.apache.spark.sql.types.{StructField, StructType, FloatType}
import org.apache.spark.sql.Row
 val rdd = sc.parallelize(Seq.fill(100)(Row(Seq(Random.nextFloat()): _*)))
val df = sqlContext.createDataFrame(rdd, StructType(Seq(StructField("test", 
FloatType))))
val npartitions = 10
df.repartition(npartitions).write.parquet("/tmp/test1")
val read = sqlContext.read.parquet("/tmp/test1")
assert(npartitions == read.rdd.getNumPartitions) //true on Spark 1.6
{code}

{code:none}
# run on Spark 2.1
import scala.util.Random
import org.apache.spark.sql.types.{StructField, StructType, FloatType}
import org.apache.spark.sql.Row
val rdd = sc.parallelize(Seq.fill(100)(Row(Seq(Random.nextFloat()): _*)))
val df = spark.sqlContext.createDataFrame(rdd, 
StructType(Seq(StructField("test", FloatType))))
val npartitions = 10
df.repartition(npartitions).write.parquet("/tmp/test1")
val read = spark.sqlContext.read.parquet("/tmp/test1")
assert(npartitions == read.rdd.getNumPartitions) //false on Spark 2.1
{code}


> Partitioning of Parquet is not considered correctly at loading in local[X] 
> mode
> -------------------------------------------------------------------------------
>
>                 Key: SPARK-19629
>                 URL: https://issues.apache.org/jira/browse/SPARK-19629
>             Project: Spark
>          Issue Type: Bug
>          Components: Input/Output, Spark Core
>    Affects Versions: 2.0.0, 2.1.0
>         Environment: Tested using docker run 
> gettyimages/spark:1.6.1-hadoop-2.6 and
> docker run gettyimages/spark:2.1.0-hadoop-2.7.
>            Reporter: Navige
>            Priority: Minor
>
> Running the following two examples will lead to different results depending 
> on whether the code is run using Spark 1.6 or Spark 2.1. 
> What does the example do?
> ===========================
> - The code creates an exemplary dataframe with random data. 
> - The dataframe is repartitioned and stored to disk. 
> - Then the dataframe is re-read from disk.
> - The number of partitions of the dataframe is considered.
> What is the expected behaviour?
> ===========================
> The number of partitions specified when storing the dataframe should be the 
> same as when re-loading the dataframe from disk.
> On Spark 1.6 the partitioning is kept, i.e., the code example will return 10 
> partitions as specified using npartitions; on Spark 2.1 the number of 
> partitions will equal the number of local nodes specified when starting Spark 
> (using local[X] as master).
> Minimal code example
> ===========================
> {code:none}
> # run on Spark 1.6
> import scala.util.Random
> import org.apache.spark.sql.types.{StructField, StructType, FloatType}
> import org.apache.spark.sql.Row
>  val rdd = sc.parallelize(Seq.fill(100)(Row(Seq(Random.nextFloat()): _*)))
> val df = sqlContext.createDataFrame(rdd, StructType(Seq(StructField("test", 
> FloatType))))
> val npartitions = 10
> df.repartition(npartitions).write.parquet("/tmp/test1")
> val read = sqlContext.read.parquet("/tmp/test1")
> assert(npartitions == read.rdd.getNumPartitions) //true on Spark 1.6
> {code}
> {code:none}
> # run on Spark 2.1
> import scala.util.Random
> import org.apache.spark.sql.types.{StructField, StructType, FloatType}
> import org.apache.spark.sql.Row
> val rdd = sc.parallelize(Seq.fill(100)(Row(Seq(Random.nextFloat()): _*)))
> val df = spark.sqlContext.createDataFrame(rdd, 
> StructType(Seq(StructField("test", FloatType))))
> val npartitions = 10
> df.repartition(npartitions).write.parquet("/tmp/test1")
> val read = spark.sqlContext.read.parquet("/tmp/test1")
> assert(npartitions == read.rdd.getNumPartitions) //false on Spark 2.1
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to