[ 
https://issues.apache.org/jira/browse/SPARK-20086?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

mandar uapdhye updated SPARK-20086:
-----------------------------------
    Description: 
original  post at
[stackoverflow | 
http://stackoverflow.com/questions/43007433/pyspark-2-1-0-error-when-working-with-window-function]

I get error when working with pyspark window function. here is some example 
code:

{code:title=test.py|borderStyle=solid}
    import pyspark
    import pyspark.sql.functions as sf
    import pyspark.sql.types as sparktypes
    from pyspark.sql import window
    
    sc = pyspark.SparkContext()
    sqlc = pyspark.SQLContext(sc)
    rdd = sc.parallelize([(1, 2.0), (1, 3.0), (1, 1.), (1, -2.), (1, -1.)])
    df = sqlc.createDataFrame(rdd, ["x", "AmtPaid"])
    df.show()

{code}

gives:

    +---+-------+
    |  x|AmtPaid|
    +---+-------+
    |  1|    2.0|
    |  1|    3.0|
    |  1|    1.0|
    |  1|   -2.0|
    |  1|   -1.0|
    +---+-------+

next, compute cumulative sum

    win_spec_max = (window.Window
                    .partitionBy(['x'])
                    .rowsBetween(window.Window.unboundedPreceding, 0)))
    df = df.withColumn('AmtPaidCumSum',
                       sf.sum(sf.col('AmtPaid')).over(win_spec_max))
    df.show()

gives,

    +---+-------+-------------+
    |  x|AmtPaid|AmtPaidCumSum|
    +---+-------+-------------+
    |  1|    2.0|          2.0|
    |  1|    3.0|          5.0|
    |  1|    1.0|          6.0|
    |  1|   -2.0|          4.0|
    |  1|   -1.0|          3.0|
    +---+-------+-------------+ 

next, compute cumulative max,

    df = df.withColumn('AmtPaidCumSumMax', 
sf.max(sf.col('AmtPaidCumSum')).over(win_spec_max))

    df.show()

gives error log


     Py4JJavaError: An error occurred while calling o2609.showString.


with traceback:

    Py4JJavaErrorTraceback (most recent call last)
    <ipython-input-215-3106d06b6e49> in <module>()
    ----> 1 df.show()

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in 
show(self, n, truncate)
        316         """
        317         if isinstance(truncate, bool) and truncate:
    --> 318             print(self._jdf.showString(n, 20))
        319         else:
        320             print(self._jdf.showString(n, int(truncate)))

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc 
in __call__(self, *args)
       1131         answer = self.gateway_client.send_command(command)
       1132         return_value = get_return_value(
    -> 1133             answer, self.gateway_client, self.target_id, self.name)
       1134 
       1135         for temp_arg in temp_args:

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in 
deco(*a, **kw)
         61     def deco(*a, **kw):
         62         try:
    ---> 63             return f(*a, **kw)
         64         except py4j.protocol.Py4JJavaError as e:
         65             s = e.java_exception.toString()

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc in 
get_return_value(answer, gateway_client, target_id, name)
        317                 raise Py4JJavaError(
        318                     "An error occurred while calling {0}{1}{2}.\n".
    --> 319                     format(target_id, ".", name), value)
        320             else:
        321                 raise Py4JError(


but interestingly enough, if i introduce another change before sencond window 
operation, say inserting a column then it does not give that error:

    df = df.withColumn('MaxBound', sf.lit(6.))
    df.show()
    +---+-------+-------------+--------+
    |  x|AmtPaid|AmtPaidCumSum|MaxBound|
    +---+-------+-------------+--------+
    |  1|    2.0|          2.0|     6.0|
    |  1|    3.0|          5.0|     6.0|
    |  1|    1.0|          6.0|     6.0|
    |  1|   -2.0|          4.0|     6.0|
    |  1|   -1.0|          3.0|     6.0|
    +---+-------+-------------+--------+


    #then apply the second window operations
    df = df.withColumn('AmtPaidCumSumMax', 
sf.max(sf.col('AmtPaidCumSum')).over(win_spec_max))
    df.show()

    +---+-------+-------------+--------+----------------+
    |  x|AmtPaid|AmtPaidCumSum|MaxBound|AmtPaidCumSumMax|
    +---+-------+-------------+--------+----------------+
    |  1|    2.0|          2.0|     6.0|             2.0|
    |  1|    3.0|          5.0|     6.0|             5.0|
    |  1|    1.0|          6.0|     6.0|             6.0|
    |  1|   -2.0|          4.0|     6.0|             6.0|
    |  1|   -1.0|          3.0|     6.0|             6.0|
    +---+-------+-------------+--------+----------------+   

I do not understand this behaviour

well, so far so good, but then I try another operation then again get similar 
error:

    def _udf_compare_cumsum_sll(x):
        if x['AmtPaidCumSumMax'] >= x['MaxBound']:
            output = 0
        else:
            output = x['AmtPaid']

    udf_compare_cumsum_sll = sf.udf(_udf_compare_cumsum_sll, 
sparktypes.FloatType())
    df = df.withColumn('AmtPaidAdjusted', 
udf_compare_cumsum_sll(sf.struct([df[x] for x in df.columns])))
    df.show()

gives,

    Py4JJavaErrorTraceback (most recent call last)
    <ipython-input-18-3106d06b6e49> in <module>()
    ----> 1 df.show()

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in 
show(self, n, truncate)
        316         """
        317         if isinstance(truncate, bool) and truncate:
    --> 318             print(self._jdf.showString(n, 20))
        319         else:
        320             print(self._jdf.showString(n, int(truncate)))

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc 
in __call__(self, *args)
       1131         answer = self.gateway_client.send_command(command)
       1132         return_value = get_return_value(
    -> 1133             answer, self.gateway_client, self.target_id, self.name)
       1134 
       1135         for temp_arg in temp_args:

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in 
deco(*a, **kw)
         61     def deco(*a, **kw):
         62         try:
    ---> 63             return f(*a, **kw)
         64         except py4j.protocol.Py4JJavaError as e:
         65             s = e.java_exception.toString()

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc in 
get_return_value(answer, gateway_client, target_id, name)
        317                 raise Py4JJavaError(
        318                     "An error occurred while calling {0}{1}{2}.\n".
    --> 319                     format(target_id, ".", name), value)
        320             else:
        321                 raise Py4JError(

    Py4JJavaError: An error occurred while calling o91.showString.
    : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 
in stage 36.0 failed 1 times, most recent failure: Lost task 0.0 in stage 36.0 
(TID 645, localhost, executor driver): 
org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding 
attribute, tree: AmtPaidCumSum#10
        

I wonder if someone could reproduce this behaviour ...


here is complete log ..


    Py4JJavaErrorTraceback (most recent call last)
    <ipython-input-69-3106d06b6e49> in <module>()
    ----> 1 df.show()

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in 
show(self, n, truncate)
        316         """
        317         if isinstance(truncate, bool) and truncate:
    --> 318             print(self._jdf.showString(n, 20))
        319         else:
        320             print(self._jdf.showString(n, int(truncate)))

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc 
in __call__(self, *args)
       1131         answer = self.gateway_client.send_command(command)
       1132         return_value = get_return_value(
    -> 1133             answer, self.gateway_client, self.target_id, self.name)
       1134
       1135         for temp_arg in temp_args:

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in 
deco(*a, **kw)
         61     def deco(*a, **kw):
         62         try:
    ---> 63             return f(*a, **kw)
         64         except py4j.protocol.Py4JJavaError as e:
         65             s = e.java_exception.toString()

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc in 
get_return_value(answer, gateway_client, target_id, name)
        317                 raise Py4JJavaError(
        318                     "An error occurred while calling {0}{1}{2}.\n".
    --> 319                     format(target_id, ".", name), value)
        320             else:
        321                 raise Py4JError(

    Py4JJavaError: An error occurred while calling o703.showString.
    : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 
in stage 119.0 failed 1 times, most recent failure: Lost task 0.0 in stage 
119.0 (TID 1817, localhost, executor driver): 
org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding 
attribute, tree: AmtPaidCumSum#2076
        at 
org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
        at 
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:287)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5$$anonfun$apply$11.apply(TreeNode.scala:360)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at scala.collection.immutable.List.foreach(List.scala:381)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.immutable.List.map(List.scala:285)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:358)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:329)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:277)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.AbstractTraversable.map(Traversable.scala:104)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.bind(GenerateMutableProjection.scala:38)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.generate(GenerateMutableProjection.scala:44)
        at 
org.apache.spark.sql.execution.SparkPlan.newMutableProjection(SparkPlan.scala:353)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:203)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:202)
        at 
org.apache.spark.sql.execution.window.AggregateProcessor$.apply(AggregateProcessor.scala:98)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2.org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1(WindowExec.scala:198)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:225)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:222)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
        at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.<init>(WindowExec.scala:318)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:290)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:289)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:99)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)
    Caused by: java.lang.RuntimeException: Couldn't find AmtPaidCumSum#2076 in 
[sum#2299,max#2300,x#2066L,AmtPaid#2067]
        at scala.sys.package$.error(package.scala:27)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88)
        at 
org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
        ... 62 more

    Driver stacktrace:
        at 
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at 
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
        at scala.Option.foreach(Option.scala:257)
        at 
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
        at 
org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
        at 
org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333)
        at 
org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
        at 
org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2371)
        at 
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
        at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765)
        at 
org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2370)
        at 
org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2377)
        at 
org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2113)
        at 
org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2112)
        at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2795)
        at org.apache.spark.sql.Dataset.head(Dataset.scala:2112)
        at org.apache.spark.sql.Dataset.take(Dataset.scala:2327)
        at org.apache.spark.sql.Dataset.showString(Dataset.scala:248)
        at sun.reflect.GeneratedMethodAccessor83.invoke(Unknown Source)
        at 
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
        at py4j.Gateway.invoke(Gateway.java:280)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:214)
        at java.lang.Thread.run(Thread.java:745)
    Caused by: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: 
Binding attribute, tree: null
        at 
org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
        at 
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:287)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5$$anonfun$apply$11.apply(TreeNode.scala:360)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at scala.collection.immutable.List.foreach(List.scala:381)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.immutable.List.map(List.scala:285)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:358)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:329)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:277)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.AbstractTraversable.map(Traversable.scala:104)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.bind(GenerateMutableProjection.scala:38)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.generate(GenerateMutableProjection.scala:44)
        at 
org.apache.spark.sql.execution.SparkPlan.newMutableProjection(SparkPlan.scala:353)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:203)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:202)
        at 
org.apache.spark.sql.execution.window.AggregateProcessor$.apply(AggregateProcessor.scala:98)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2.org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1(WindowExec.scala:198)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:225)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:222)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
        at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.<init>(WindowExec.scala:318)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:290)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:289)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:99)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        ... 1 more
    Caused by: java.lang.RuntimeException: Couldn't find AmtPaidCumSum#2076 in 
[sum#2299,max#2300,x#2066L,AmtPaid#2067]
        at scala.sys.package$.error(package.scala:27)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88)
        at 
org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
        ... 62 more


  was:
original  post at
[stackoverflow | 
http://stackoverflow.com/questions/43007433/pyspark-2-1-0-error-when-working-with-window-function]

I get error when working with pyspark window function. here is some example 
code:

    import pyspark
    import pyspark.sql.functions as sf
    import pyspark.sql.types as sparktypes
    from pyspark.sql import window
    
    sc = pyspark.SparkContext()
    sqlc = pyspark.SQLContext(sc)
    rdd = sc.parallelize([(1, 2.0), (1, 3.0), (1, 1.), (1, -2.), (1, -1.)])
    df = sqlc.createDataFrame(rdd, ["x", "AmtPaid"])
    df.show()

gives:

    +---+-------+
    |  x|AmtPaid|
    +---+-------+
    |  1|    2.0|
    |  1|    3.0|
    |  1|    1.0|
    |  1|   -2.0|
    |  1|   -1.0|
    +---+-------+

next, compute cumulative sum

    win_spec_max = (window.Window
                    .partitionBy(['x'])
                    .rowsBetween(window.Window.unboundedPreceding, 0)))
    df = df.withColumn('AmtPaidCumSum',
                       sf.sum(sf.col('AmtPaid')).over(win_spec_max))
    df.show()

gives,

    +---+-------+-------------+
    |  x|AmtPaid|AmtPaidCumSum|
    +---+-------+-------------+
    |  1|    2.0|          2.0|
    |  1|    3.0|          5.0|
    |  1|    1.0|          6.0|
    |  1|   -2.0|          4.0|
    |  1|   -1.0|          3.0|
    +---+-------+-------------+ 

next, compute cumulative max,

    df = df.withColumn('AmtPaidCumSumMax', 
sf.max(sf.col('AmtPaidCumSum')).over(win_spec_max))

    df.show()

gives error log


     Py4JJavaError: An error occurred while calling o2609.showString.


with traceback:

    Py4JJavaErrorTraceback (most recent call last)
    <ipython-input-215-3106d06b6e49> in <module>()
    ----> 1 df.show()

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in 
show(self, n, truncate)
        316         """
        317         if isinstance(truncate, bool) and truncate:
    --> 318             print(self._jdf.showString(n, 20))
        319         else:
        320             print(self._jdf.showString(n, int(truncate)))

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc 
in __call__(self, *args)
       1131         answer = self.gateway_client.send_command(command)
       1132         return_value = get_return_value(
    -> 1133             answer, self.gateway_client, self.target_id, self.name)
       1134 
       1135         for temp_arg in temp_args:

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in 
deco(*a, **kw)
         61     def deco(*a, **kw):
         62         try:
    ---> 63             return f(*a, **kw)
         64         except py4j.protocol.Py4JJavaError as e:
         65             s = e.java_exception.toString()

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc in 
get_return_value(answer, gateway_client, target_id, name)
        317                 raise Py4JJavaError(
        318                     "An error occurred while calling {0}{1}{2}.\n".
    --> 319                     format(target_id, ".", name), value)
        320             else:
        321                 raise Py4JError(


but interestingly enough, if i introduce another change before sencond window 
operation, say inserting a column then it does not give that error:

    df = df.withColumn('MaxBound', sf.lit(6.))
    df.show()
    +---+-------+-------------+--------+
    |  x|AmtPaid|AmtPaidCumSum|MaxBound|
    +---+-------+-------------+--------+
    |  1|    2.0|          2.0|     6.0|
    |  1|    3.0|          5.0|     6.0|
    |  1|    1.0|          6.0|     6.0|
    |  1|   -2.0|          4.0|     6.0|
    |  1|   -1.0|          3.0|     6.0|
    +---+-------+-------------+--------+


    #then apply the second window operations
    df = df.withColumn('AmtPaidCumSumMax', 
sf.max(sf.col('AmtPaidCumSum')).over(win_spec_max))
    df.show()

    +---+-------+-------------+--------+----------------+
    |  x|AmtPaid|AmtPaidCumSum|MaxBound|AmtPaidCumSumMax|
    +---+-------+-------------+--------+----------------+
    |  1|    2.0|          2.0|     6.0|             2.0|
    |  1|    3.0|          5.0|     6.0|             5.0|
    |  1|    1.0|          6.0|     6.0|             6.0|
    |  1|   -2.0|          4.0|     6.0|             6.0|
    |  1|   -1.0|          3.0|     6.0|             6.0|
    +---+-------+-------------+--------+----------------+   

I do not understand this behaviour

well, so far so good, but then I try another operation then again get similar 
error:

    def _udf_compare_cumsum_sll(x):
        if x['AmtPaidCumSumMax'] >= x['MaxBound']:
            output = 0
        else:
            output = x['AmtPaid']

    udf_compare_cumsum_sll = sf.udf(_udf_compare_cumsum_sll, 
sparktypes.FloatType())
    df = df.withColumn('AmtPaidAdjusted', 
udf_compare_cumsum_sll(sf.struct([df[x] for x in df.columns])))
    df.show()

gives,

    Py4JJavaErrorTraceback (most recent call last)
    <ipython-input-18-3106d06b6e49> in <module>()
    ----> 1 df.show()

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in 
show(self, n, truncate)
        316         """
        317         if isinstance(truncate, bool) and truncate:
    --> 318             print(self._jdf.showString(n, 20))
        319         else:
        320             print(self._jdf.showString(n, int(truncate)))

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc 
in __call__(self, *args)
       1131         answer = self.gateway_client.send_command(command)
       1132         return_value = get_return_value(
    -> 1133             answer, self.gateway_client, self.target_id, self.name)
       1134 
       1135         for temp_arg in temp_args:

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in 
deco(*a, **kw)
         61     def deco(*a, **kw):
         62         try:
    ---> 63             return f(*a, **kw)
         64         except py4j.protocol.Py4JJavaError as e:
         65             s = e.java_exception.toString()

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc in 
get_return_value(answer, gateway_client, target_id, name)
        317                 raise Py4JJavaError(
        318                     "An error occurred while calling {0}{1}{2}.\n".
    --> 319                     format(target_id, ".", name), value)
        320             else:
        321                 raise Py4JError(

    Py4JJavaError: An error occurred while calling o91.showString.
    : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 
in stage 36.0 failed 1 times, most recent failure: Lost task 0.0 in stage 36.0 
(TID 645, localhost, executor driver): 
org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding 
attribute, tree: AmtPaidCumSum#10
        

I wonder if someone could reproduce this behaviour ...


here is complete log ..


    Py4JJavaErrorTraceback (most recent call last)
    <ipython-input-69-3106d06b6e49> in <module>()
    ----> 1 df.show()

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in 
show(self, n, truncate)
        316         """
        317         if isinstance(truncate, bool) and truncate:
    --> 318             print(self._jdf.showString(n, 20))
        319         else:
        320             print(self._jdf.showString(n, int(truncate)))

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc 
in __call__(self, *args)
       1131         answer = self.gateway_client.send_command(command)
       1132         return_value = get_return_value(
    -> 1133             answer, self.gateway_client, self.target_id, self.name)
       1134
       1135         for temp_arg in temp_args:

    /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in 
deco(*a, **kw)
         61     def deco(*a, **kw):
         62         try:
    ---> 63             return f(*a, **kw)
         64         except py4j.protocol.Py4JJavaError as e:
         65             s = e.java_exception.toString()

    /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc in 
get_return_value(answer, gateway_client, target_id, name)
        317                 raise Py4JJavaError(
        318                     "An error occurred while calling {0}{1}{2}.\n".
    --> 319                     format(target_id, ".", name), value)
        320             else:
        321                 raise Py4JError(

    Py4JJavaError: An error occurred while calling o703.showString.
    : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 
in stage 119.0 failed 1 times, most recent failure: Lost task 0.0 in stage 
119.0 (TID 1817, localhost, executor driver): 
org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding 
attribute, tree: AmtPaidCumSum#2076
        at 
org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
        at 
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:287)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5$$anonfun$apply$11.apply(TreeNode.scala:360)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at scala.collection.immutable.List.foreach(List.scala:381)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.immutable.List.map(List.scala:285)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:358)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:329)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:277)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.AbstractTraversable.map(Traversable.scala:104)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.bind(GenerateMutableProjection.scala:38)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.generate(GenerateMutableProjection.scala:44)
        at 
org.apache.spark.sql.execution.SparkPlan.newMutableProjection(SparkPlan.scala:353)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:203)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:202)
        at 
org.apache.spark.sql.execution.window.AggregateProcessor$.apply(AggregateProcessor.scala:98)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2.org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1(WindowExec.scala:198)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:225)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:222)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
        at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.<init>(WindowExec.scala:318)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:290)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:289)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:99)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)
    Caused by: java.lang.RuntimeException: Couldn't find AmtPaidCumSum#2076 in 
[sum#2299,max#2300,x#2066L,AmtPaid#2067]
        at scala.sys.package$.error(package.scala:27)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88)
        at 
org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
        ... 62 more

    Driver stacktrace:
        at 
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at 
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
        at scala.Option.foreach(Option.scala:257)
        at 
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
        at 
org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
        at 
org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333)
        at 
org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
        at 
org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2371)
        at 
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
        at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765)
        at 
org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2370)
        at 
org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2377)
        at 
org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2113)
        at 
org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2112)
        at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2795)
        at org.apache.spark.sql.Dataset.head(Dataset.scala:2112)
        at org.apache.spark.sql.Dataset.take(Dataset.scala:2327)
        at org.apache.spark.sql.Dataset.showString(Dataset.scala:248)
        at sun.reflect.GeneratedMethodAccessor83.invoke(Unknown Source)
        at 
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
        at py4j.Gateway.invoke(Gateway.java:280)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:214)
        at java.lang.Thread.run(Thread.java:745)
    Caused by: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: 
Binding attribute, tree: null
        at 
org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
        at 
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:287)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5$$anonfun$apply$11.apply(TreeNode.scala:360)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at scala.collection.immutable.List.foreach(List.scala:381)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.immutable.List.map(List.scala:285)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:358)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:329)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:293)
        at 
org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:277)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.AbstractTraversable.map(Traversable.scala:104)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.bind(GenerateMutableProjection.scala:38)
        at 
org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.generate(GenerateMutableProjection.scala:44)
        at 
org.apache.spark.sql.execution.SparkPlan.newMutableProjection(SparkPlan.scala:353)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:203)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:202)
        at 
org.apache.spark.sql.execution.window.AggregateProcessor$.apply(AggregateProcessor.scala:98)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2.org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1(WindowExec.scala:198)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:225)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:222)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
        at 
scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
        at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
        at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.<init>(WindowExec.scala:318)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:290)
        at 
org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:289)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:99)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        ... 1 more
    Caused by: java.lang.RuntimeException: Couldn't find AmtPaidCumSum#2076 in 
[sum#2299,max#2300,x#2066L,AmtPaid#2067]
        at scala.sys.package$.error(package.scala:27)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94)
        at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88)
        at 
org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
        ... 62 more



> issue with pyspark 2.1.0 window function
> ----------------------------------------
>
>                 Key: SPARK-20086
>                 URL: https://issues.apache.org/jira/browse/SPARK-20086
>             Project: Spark
>          Issue Type: Bug
>          Components: PySpark
>    Affects Versions: 2.1.0
>            Reporter: mandar uapdhye
>
> original  post at
> [stackoverflow | 
> http://stackoverflow.com/questions/43007433/pyspark-2-1-0-error-when-working-with-window-function]
> I get error when working with pyspark window function. here is some example 
> code:
> {code:title=test.py|borderStyle=solid}
>     import pyspark
>     import pyspark.sql.functions as sf
>     import pyspark.sql.types as sparktypes
>     from pyspark.sql import window
>     
>     sc = pyspark.SparkContext()
>     sqlc = pyspark.SQLContext(sc)
>     rdd = sc.parallelize([(1, 2.0), (1, 3.0), (1, 1.), (1, -2.), (1, -1.)])
>     df = sqlc.createDataFrame(rdd, ["x", "AmtPaid"])
>     df.show()
> {code}
> gives:
>     +---+-------+
>     |  x|AmtPaid|
>     +---+-------+
>     |  1|    2.0|
>     |  1|    3.0|
>     |  1|    1.0|
>     |  1|   -2.0|
>     |  1|   -1.0|
>     +---+-------+
> next, compute cumulative sum
>     win_spec_max = (window.Window
>                     .partitionBy(['x'])
>                     .rowsBetween(window.Window.unboundedPreceding, 0)))
>     df = df.withColumn('AmtPaidCumSum',
>                        sf.sum(sf.col('AmtPaid')).over(win_spec_max))
>     df.show()
> gives,
>     +---+-------+-------------+
>     |  x|AmtPaid|AmtPaidCumSum|
>     +---+-------+-------------+
>     |  1|    2.0|          2.0|
>     |  1|    3.0|          5.0|
>     |  1|    1.0|          6.0|
>     |  1|   -2.0|          4.0|
>     |  1|   -1.0|          3.0|
>     +---+-------+-------------+ 
> next, compute cumulative max,
>     df = df.withColumn('AmtPaidCumSumMax', 
> sf.max(sf.col('AmtPaidCumSum')).over(win_spec_max))
>     df.show()
> gives error log
>      Py4JJavaError: An error occurred while calling o2609.showString.
> with traceback:
>     Py4JJavaErrorTraceback (most recent call last)
>     <ipython-input-215-3106d06b6e49> in <module>()
>     ----> 1 df.show()
>     /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in 
> show(self, n, truncate)
>         316         """
>         317         if isinstance(truncate, bool) and truncate:
>     --> 318             print(self._jdf.showString(n, 20))
>         319         else:
>         320             print(self._jdf.showString(n, int(truncate)))
>     
> /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc 
> in __call__(self, *args)
>        1131         answer = self.gateway_client.send_command(command)
>        1132         return_value = get_return_value(
>     -> 1133             answer, self.gateway_client, self.target_id, 
> self.name)
>        1134 
>        1135         for temp_arg in temp_args:
>     /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in 
> deco(*a, **kw)
>          61     def deco(*a, **kw):
>          62         try:
>     ---> 63             return f(*a, **kw)
>          64         except py4j.protocol.Py4JJavaError as e:
>          65             s = e.java_exception.toString()
>     /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc 
> in get_return_value(answer, gateway_client, target_id, name)
>         317                 raise Py4JJavaError(
>         318                     "An error occurred while calling 
> {0}{1}{2}.\n".
>     --> 319                     format(target_id, ".", name), value)
>         320             else:
>         321                 raise Py4JError(
> but interestingly enough, if i introduce another change before sencond window 
> operation, say inserting a column then it does not give that error:
>     df = df.withColumn('MaxBound', sf.lit(6.))
>     df.show()
>     +---+-------+-------------+--------+
>     |  x|AmtPaid|AmtPaidCumSum|MaxBound|
>     +---+-------+-------------+--------+
>     |  1|    2.0|          2.0|     6.0|
>     |  1|    3.0|          5.0|     6.0|
>     |  1|    1.0|          6.0|     6.0|
>     |  1|   -2.0|          4.0|     6.0|
>     |  1|   -1.0|          3.0|     6.0|
>     +---+-------+-------------+--------+
>     #then apply the second window operations
>     df = df.withColumn('AmtPaidCumSumMax', 
> sf.max(sf.col('AmtPaidCumSum')).over(win_spec_max))
>     df.show()
>     +---+-------+-------------+--------+----------------+
>     |  x|AmtPaid|AmtPaidCumSum|MaxBound|AmtPaidCumSumMax|
>     +---+-------+-------------+--------+----------------+
>     |  1|    2.0|          2.0|     6.0|             2.0|
>     |  1|    3.0|          5.0|     6.0|             5.0|
>     |  1|    1.0|          6.0|     6.0|             6.0|
>     |  1|   -2.0|          4.0|     6.0|             6.0|
>     |  1|   -1.0|          3.0|     6.0|             6.0|
>     +---+-------+-------------+--------+----------------+   
> I do not understand this behaviour
> well, so far so good, but then I try another operation then again get similar 
> error:
>     def _udf_compare_cumsum_sll(x):
>         if x['AmtPaidCumSumMax'] >= x['MaxBound']:
>             output = 0
>         else:
>             output = x['AmtPaid']
>     udf_compare_cumsum_sll = sf.udf(_udf_compare_cumsum_sll, 
> sparktypes.FloatType())
>     df = df.withColumn('AmtPaidAdjusted', 
> udf_compare_cumsum_sll(sf.struct([df[x] for x in df.columns])))
>     df.show()
> gives,
>     Py4JJavaErrorTraceback (most recent call last)
>     <ipython-input-18-3106d06b6e49> in <module>()
>     ----> 1 df.show()
>     /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in 
> show(self, n, truncate)
>         316         """
>         317         if isinstance(truncate, bool) and truncate:
>     --> 318             print(self._jdf.showString(n, 20))
>         319         else:
>         320             print(self._jdf.showString(n, int(truncate)))
>     
> /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc 
> in __call__(self, *args)
>        1131         answer = self.gateway_client.send_command(command)
>        1132         return_value = get_return_value(
>     -> 1133             answer, self.gateway_client, self.target_id, 
> self.name)
>        1134 
>        1135         for temp_arg in temp_args:
>     /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in 
> deco(*a, **kw)
>          61     def deco(*a, **kw):
>          62         try:
>     ---> 63             return f(*a, **kw)
>          64         except py4j.protocol.Py4JJavaError as e:
>          65             s = e.java_exception.toString()
>     /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc 
> in get_return_value(answer, gateway_client, target_id, name)
>         317                 raise Py4JJavaError(
>         318                     "An error occurred while calling 
> {0}{1}{2}.\n".
>     --> 319                     format(target_id, ".", name), value)
>         320             else:
>         321                 raise Py4JError(
>     Py4JJavaError: An error occurred while calling o91.showString.
>     : org.apache.spark.SparkException: Job aborted due to stage failure: Task 
> 0 in stage 36.0 failed 1 times, most recent failure: Lost task 0.0 in stage 
> 36.0 (TID 645, localhost, executor driver): 
> org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding 
> attribute, tree: AmtPaidCumSum#10
>       
> I wonder if someone could reproduce this behaviour ...
> here is complete log ..
>     Py4JJavaErrorTraceback (most recent call last)
>     <ipython-input-69-3106d06b6e49> in <module>()
>     ----> 1 df.show()
>     /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/dataframe.pyc in 
> show(self, n, truncate)
>         316         """
>         317         if isinstance(truncate, bool) and truncate:
>     --> 318             print(self._jdf.showString(n, 20))
>         319         else:
>         320             print(self._jdf.showString(n, int(truncate)))
>     
> /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/java_gateway.pyc 
> in __call__(self, *args)
>        1131         answer = self.gateway_client.send_command(command)
>        1132         return_value = get_return_value(
>     -> 1133             answer, self.gateway_client, self.target_id, 
> self.name)
>        1134
>        1135         for temp_arg in temp_args:
>     /Users/<>/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in 
> deco(*a, **kw)
>          61     def deco(*a, **kw):
>          62         try:
>     ---> 63             return f(*a, **kw)
>          64         except py4j.protocol.Py4JJavaError as e:
>          65             s = e.java_exception.toString()
>     /Users/<>/.virtualenvs/<>/lib/python2.7/site-packages/py4j/protocol.pyc 
> in get_return_value(answer, gateway_client, target_id, name)
>         317                 raise Py4JJavaError(
>         318                     "An error occurred while calling 
> {0}{1}{2}.\n".
>     --> 319                     format(target_id, ".", name), value)
>         320             else:
>         321                 raise Py4JError(
>     Py4JJavaError: An error occurred while calling o703.showString.
>     : org.apache.spark.SparkException: Job aborted due to stage failure: Task 
> 0 in stage 119.0 failed 1 times, most recent failure: Lost task 0.0 in stage 
> 119.0 (TID 1817, localhost, executor driver): 
> org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding 
> attribute, tree: AmtPaidCumSum#2076
>       at 
> org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56)
>       at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88)
>       at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
>       at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:287)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5$$anonfun$apply$11.apply(TreeNode.scala:360)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at scala.collection.immutable.List.foreach(List.scala:381)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.immutable.List.map(List.scala:285)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:358)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:329)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:293)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:277)
>       at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87)
>       at 
> org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
>       at 
> org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>       at 
> org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.bind(GenerateMutableProjection.scala:38)
>       at 
> org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.generate(GenerateMutableProjection.scala:44)
>       at 
> org.apache.spark.sql.execution.SparkPlan.newMutableProjection(SparkPlan.scala:353)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:203)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:202)
>       at 
> org.apache.spark.sql.execution.window.AggregateProcessor$.apply(AggregateProcessor.scala:98)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2.org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1(WindowExec.scala:198)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:225)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:222)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
>       at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.<init>(WindowExec.scala:318)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:290)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:289)
>       at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
>       at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>       at org.apache.spark.scheduler.Task.run(Task.scala:99)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>       at java.lang.Thread.run(Thread.java:745)
>     Caused by: java.lang.RuntimeException: Couldn't find AmtPaidCumSum#2076 
> in [sum#2299,max#2300,x#2066L,AmtPaid#2067]
>       at scala.sys.package$.error(package.scala:27)
>       at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94)
>       at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88)
>       at 
> org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
>       ... 62 more
>     Driver stacktrace:
>       at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>       at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
>       at scala.Option.foreach(Option.scala:257)
>       at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
>       at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>       at 
> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
>       at 
> org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333)
>       at 
> org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
>       at 
> org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2371)
>       at 
> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
>       at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765)
>       at 
> org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2370)
>       at 
> org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2377)
>       at 
> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2113)
>       at 
> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2112)
>       at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2795)
>       at org.apache.spark.sql.Dataset.head(Dataset.scala:2112)
>       at org.apache.spark.sql.Dataset.take(Dataset.scala:2327)
>       at org.apache.spark.sql.Dataset.showString(Dataset.scala:248)
>       at sun.reflect.GeneratedMethodAccessor83.invoke(Unknown Source)
>       at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>       at java.lang.reflect.Method.invoke(Method.java:498)
>       at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
>       at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
>       at py4j.Gateway.invoke(Gateway.java:280)
>       at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
>       at py4j.commands.CallCommand.execute(CallCommand.java:79)
>       at py4j.GatewayConnection.run(GatewayConnection.java:214)
>       at java.lang.Thread.run(Thread.java:745)
>     Caused by: 
> org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding 
> attribute, tree: null
>       at 
> org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56)
>       at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88)
>       at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
>       at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:287)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5$$anonfun$apply$11.apply(TreeNode.scala:360)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at scala.collection.immutable.List.foreach(List.scala:381)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.immutable.List.map(List.scala:285)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:358)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:329)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:293)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:277)
>       at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87)
>       at 
> org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
>       at 
> org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$bind$1.apply(GenerateMutableProjection.scala:38)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>       at 
> org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.bind(GenerateMutableProjection.scala:38)
>       at 
> org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.generate(GenerateMutableProjection.scala:44)
>       at 
> org.apache.spark.sql.execution.SparkPlan.newMutableProjection(SparkPlan.scala:353)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:203)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1$1.apply(WindowExec.scala:202)
>       at 
> org.apache.spark.sql.execution.window.AggregateProcessor$.apply(AggregateProcessor.scala:98)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2.org$apache$spark$sql$execution$window$WindowExec$$anonfun$$processor$1(WindowExec.scala:198)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:225)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$windowFrameExpressionFactoryPairs$2$$anonfun$6.apply(WindowExec.scala:222)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1$$anonfun$16.apply(WindowExec.scala:318)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
>       at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.<init>(WindowExec.scala:318)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:290)
>       at 
> org.apache.spark.sql.execution.window.WindowExec$$anonfun$14.apply(WindowExec.scala:289)
>       at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
>       at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:796)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>       at org.apache.spark.scheduler.Task.run(Task.scala:99)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>       ... 1 more
>     Caused by: java.lang.RuntimeException: Couldn't find AmtPaidCumSum#2076 
> in [sum#2299,max#2300,x#2066L,AmtPaid#2067]
>       at scala.sys.package$.error(package.scala:27)
>       at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94)
>       at 
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88)
>       at 
> org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
>       ... 62 more



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to