[ 
https://issues.apache.org/jira/browse/SPARK-20238?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Sean Owen resolved SPARK-20238.
-------------------------------
    Resolution: Invalid

The example is OK. The error indicates you ran it with an argument that wasn't 
accepted, like an unknown path.

Don't reopen issues. As I say, pursue the question on the mailing list first.

>  Is the JavaDirectKafkaWordCount example correct for Spark version 2.1?
> -----------------------------------------------------------------------
>
>                 Key: SPARK-20238
>                 URL: https://issues.apache.org/jira/browse/SPARK-20238
>             Project: Spark
>          Issue Type: Question
>          Components: Examples, ML
>    Affects Versions: 2.1.0
>            Reporter: rayu yuan
>
> My question is 
> https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/streaming/JavaKafkaWordCount.java
>  correct?
> I'm pretty new to Spark.  I wanted to find an example of Spark Streaming 
> using Java, streaming from Kafka. The JavaDirectKafkaWordCount at 
> https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/streaming/JavaDirectKafkaWordCount.java
>  looked to be perfect.
> I copied code as below:
> {code}
> SparkConf sparkConf = new SparkConf().setAppName("JavaDirectKafkaWordCount")
>                               .setMaster("spark://slc:7077");
>               JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, 
> Durations.seconds(10));
>               Map<String, Object> kafkaParams = new HashMap<>();
>               kafkaParams.put("bootstrap.servers", "10.0.1.2:9092");
>               kafkaParams.put("key.deserializer", StringDeserializer.class);
>               kafkaParams.put("value.deserializer", StringDeserializer.class);
>               kafkaParams.put("group.id", "group1");
>               kafkaParams.put("auto.offset.reset", "earliest");
>               kafkaParams.put("enable.auto.commit", false);
>               Collection<String> topics = Collections.singletonList("test");
>               final Logger log = 
> LogManager.getLogger(JavaDirectKafkaWordCount.class);
>               final JavaInputDStream<ConsumerRecord<String, String>> stream = 
> KafkaUtils.createDirectStream(jssc,
>                               LocationStrategies.PreferConsistent(),
>                               ConsumerStrategies.<String, 
> String>Subscribe(topics, kafkaParams));
>               stream.print();
>               
> {code}
> Appeared to throw an error around logging:
> {code}
> 17/04/05 22:43:10 INFO SparkContext: Starting job: print at 
> JavaDirectKafkaWordCount.java:47
> 17/04/05 22:43:10 INFO DAGScheduler: Got job 0 (print at 
> JavaDirectKafkaWordCount.java:47) with 1 output partitions
> 17/04/05 22:43:10 INFO DAGScheduler: Final stage: ResultStage 0 (print at 
> JavaDirectKafkaWordCount.java:47)
> 17/04/05 22:43:10 INFO DAGScheduler: Parents of final stage: List()
> 17/04/05 22:43:10 INFO DAGScheduler: Missing parents: List()
> 17/04/05 22:43:10 INFO DAGScheduler: Submitting ResultStage 0 (KafkaRDD[0] at 
> createDirectStream at JavaDirectKafkaWordCount.java:44), which has no missing 
> parents
> 17/04/05 22:43:10 INFO MemoryStore: Block broadcast_0 stored as values in 
> memory (estimated size 2.3 KB, free 366.3 MB)
> 17/04/05 22:43:10 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes 
> in memory (estimated size 1529.0 B, free 366.3 MB)
> 17/04/05 22:43:10 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory 
> on 10.245.226.155:15258 (size: 1529.0 B, free: 366.3 MB)
> 17/04/05 22:43:10 INFO SparkContext: Created broadcast 0 from broadcast at 
> DAGScheduler.scala:996
> 17/04/05 22:43:10 INFO DAGScheduler: Submitting 1 missing tasks from 
> ResultStage 0 (KafkaRDD[0] at createDirectStream at 
> JavaDirectKafkaWordCount.java:44)
> 17/04/05 22:43:10 INFO TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
> 17/04/05 22:43:10 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: 
> Registered executor NettyRpcEndpointRef(null) (10.245.226.155:53448) with ID 0
> 17/04/05 22:43:10 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 
> 10.245.226.155, executor 0, partition 0, PROCESS_LOCAL, 7295 bytes)
> 17/04/05 22:43:10 INFO BlockManagerMasterEndpoint: Registering block manager 
> 10.245.226.155:14669 with 366.3 MB RAM, BlockManagerId(0, 10.245.226.155, 
> 14669, None)
> 17/04/05 22:43:10 INFO CoarseGrainedSchedulerBackend$DriverEndpoint: 
> Registered executor NettyRpcEndpointRef(null) (10.245.226.155:53447) with ID 1
> 17/04/05 22:43:10 INFO BlockManagerMasterEndpoint: Registering block manager 
> 10.245.226.155:33754 with 366.3 MB RAM, BlockManagerId(1, 10.245.226.155, 
> 33754, None)
> 17/04/05 22:43:11 WARN TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0, 
> 10.245.226.155, executor 0): java.lang.NullPointerException
>         at org.apache.spark.util.Utils$.decodeFileNameInURI(Utils.scala:409)
>         at org.apache.spark.util.Utils$.fetchFile(Utils.scala:434)
>         at 
> org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$updateDependencies$5.apply(Executor.scala:508)
>         at 
> org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$updateDependencies$5.apply(Executor.scala:500)
>         at 
> scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)
>         at 
> scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:99)
>         at 
> scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:99)
>         at 
> scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230)
>         at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
>         at scala.collection.mutable.HashMap.foreach(HashMap.scala:99)
>         at 
> scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)
>         at 
> org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$updateDependencies(Executor.scala:500)
>         at 
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:257)
>         at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>         at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>         at java.lang.Thread.run(Thread.java:745)
> {code}
> So is the example in 
> https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/streaming/JavaDirectKafkaWordCount.java
>  or is there something I could have done differently to get that example 
> working?
> and how I can debug spark jobs or logging of the jobs?



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to