Udit Mehrotra created SPARK-20515:
-------------------------------------

             Summary: Issue with reading Hive ORC tables having char/varchar 
columns in Spark SQL
                 Key: SPARK-20515
                 URL: https://issues.apache.org/jira/browse/SPARK-20515
             Project: Spark
          Issue Type: Bug
          Components: SQL
    Affects Versions: 2.0.2
         Environment: AWS EMR Cluster
            Reporter: Udit Mehrotra


Reading from a Hive ORC table containing char/varchar columns fails in Spark 
SQL. This is caused by the fact that Spark SQL internally replaces the 
char/varchar columns with String data type. So, while reading from the table 
created in Hive which has varchar/char columns, it ends up using the wrong 
reader and causes a ClassCastException.
 
Here is the exception:
 
java.lang.ClassCastException: 
org.apache.hadoop.hive.serde2.io.HiveVarcharWritable cannot be cast to 
org.apache.hadoop.io.Text
                at 
org.apache.hadoop.hive.serde2.objectinspector.primitive.WritableStringObjectInspector.getPrimitiveWritableObject(WritableStringObjectInspector.java:41)
                at 
org.apache.spark.sql.hive.HiveInspectors$class.unwrap(HiveInspectors.scala:324)
                at 
org.apache.spark.sql.hive.HadoopTableReader$.unwrap(TableReader.scala:333)
                at 
org.apache.spark.sql.hive.HadoopTableReader$$anonfun$14$$anonfun$apply$15.apply(TableReader.scala:419)
                at 
org.apache.spark.sql.hive.HadoopTableReader$$anonfun$14$$anonfun$apply$15.apply(TableReader.scala:419)
                at 
org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:435)
                at 
org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:426)
                at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
                at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
                at 
org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:247)
                at 
org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:240)
                at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:803)
                at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:803)
                at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
                at 
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
                at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
                at 
org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
                at org.apache.spark.scheduler.Task.run(Task.scala:86)
                at 
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
                at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
                at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
                at java.lang.Thread.run(Thread.java:745)
 
While the issue has been fixed in Spark 2.1.1 and 2.2.0 with SPARK-19459, it 
still needs to be fixed Spark 2.0.



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to