[ 
https://issues.apache.org/jira/browse/SPARK-21358?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Reynold Xin resolved SPARK-21358.
---------------------------------
       Resolution: Fixed
         Assignee: chie hayashida
    Fix Version/s: 2.3.0

> Argument of repartitionandsortwithinpartitions at pyspark
> ---------------------------------------------------------
>
>                 Key: SPARK-21358
>                 URL: https://issues.apache.org/jira/browse/SPARK-21358
>             Project: Spark
>          Issue Type: Improvement
>          Components: Documentation, Examples
>    Affects Versions: 2.1.1
>            Reporter: chie hayashida
>            Assignee: chie hayashida
>            Priority: Minor
>             Fix For: 2.3.0
>
>
> In rdd.py, implementation of repartitionandsortwithinpartitions is below.
> {code}
>  def repartitionAndSortWithinPartitions(self, numPartitions=None, 
> partitionFunc=portable_hash,
>                                            ascending=True, keyfunc=lambda x: 
> x):
> {code}
> And at document, there is following sample script.
> {code}
>         >>> rdd = sc.parallelize([(0, 5), (3, 8), (2, 6), (0, 8), (3, 8), (1, 
> 3)])
>         >>> rdd2 = rdd.repartitionAndSortWithinPartitions(2, lambda x: x % 2, 
> 2)
> {code}
> The third argument (ascending) expected to be boolean, so following script is 
> better, I think.
> {code}
>         >>> rdd = sc.parallelize([(0, 5), (3, 8), (2, 6), (0, 8), (3, 8), (1, 
> 3)])
>         >>> rdd2 = rdd.repartitionAndSortWithinPartitions(2, lambda x: x % 2, 
> True)
> {code}



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to