[
https://issues.apache.org/jira/browse/SPARK-3188?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Xiangrui Meng updated SPARK-3188:
---------------------------------
Target Version/s: 1.3.0 (was: 1.2.0)
> Add Robust Regression Algorithm with Tukey bisquare weight function
> (Biweight Estimates)
> ------------------------------------------------------------------------------------------
>
> Key: SPARK-3188
> URL: https://issues.apache.org/jira/browse/SPARK-3188
> Project: Spark
> Issue Type: New Feature
> Components: MLlib
> Reporter: Fan Jiang
> Priority: Minor
> Labels: features
> Original Estimate: 0h
> Remaining Estimate: 0h
>
> Linear least square estimates assume the error has normal distribution and
> can behave badly when the errors are heavy-tailed. In practical we get
> various types of data. We need to include Robust Regression to employ a
> fitting criterion that is not as vulnerable as least square.
> The Tukey bisquare weight function, also referred to as the biweight
> function, produces an M-estimator that is more resistant to regression
> outliers than the Huber M-estimator (Andersen 2008: 19).
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]