[ 
https://issues.apache.org/jira/browse/SPARK-21693?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16121827#comment-16121827
 ] 

Hyukjin Kwon commented on SPARK-21693:
--------------------------------------

FYI, [~felixcheung] and [~shivaram].

> AppVeyor tests reach the time limit, 1.5 hours, sometimes in SparkR tests
> -------------------------------------------------------------------------
>
>                 Key: SPARK-21693
>                 URL: https://issues.apache.org/jira/browse/SPARK-21693
>             Project: Spark
>          Issue Type: Test
>          Components: Build, SparkR
>    Affects Versions: 2.3.0
>            Reporter: Hyukjin Kwon
>
> We finally sometimes reach the time limit, 1.5 hours, 
> https://ci.appveyor.com/project/ApacheSoftwareFoundation/spark/build/1676-master
> I requested to increase this from an hour to 1.5 hours before but it looks we 
> should fix this in AppVeyor. I asked this for my account few times before but 
> it looks we can't increase this time limit again and again.
> I could identify three things that take a quite a bit of times:
> 1. Disabled cache feature in pull request builder, which ends up downloading 
> Maven dependencies (15-20ish mins)
> https://www.appveyor.com/docs/build-cache/
> {quote}
> Note: Saving cache is disabled in Pull Request builds.
> {quote}
> and also see 
> http://help.appveyor.com/discussions/problems/4159-cache-doesnt-seem-to-be-working
> This seems difficult to fix within Spark.
> 2. "MLlib classification algorithms" tests (30-35ish mins)
> This test below looks taking 30-35ish mins.
> {code}
> MLlib classification algorithms, except for tree-based algorithms: Spark 
> package found in SPARK_HOME: C:\projects\spark\bin\..
> ......................................................................
> {code}
> As a (I think) last resort, we could make a matrix for this test alone, so 
> that we run the other tests after a build and then run this test after 
> another build, for example, I run Scala tests by this workaround - 
> https://ci.appveyor.com/project/spark-test/spark/build/757-20170716 (a matrix 
> with 7 build and test each).
> 3. Disabled {{spark.sparkr.use.daemon}} on Windows due to the limitation of 
> {{mcfork}}
> See [this 
> codes|https://github.com/apache/spark/blob/478fbc866fbfdb4439788583281863ecea14e8af/core/src/main/scala/org/apache/spark/api/r/RRunner.scala#L362-L392].
>  We disabled this feature and currently fork processes from Java that is 
> expensive. I haven't tested this yet but maybe reducing 
> {{spark.sql.shuffle.partitions}} can be an approach to work around this. 
> Currently, if I understood correctly, this is 200 by default in R tests, 
> which ends up with 200 Java processes for every shuffle.



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to