[ 
https://issues.apache.org/jira/browse/SPARK-17025?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16124496#comment-16124496
 ] 

Peter Knight commented on SPARK-17025:
--------------------------------------


Thank you for your e-mail. I am on holiday until Monday 21st August when I will 
try to deal with your request.


Pete

Dr Peter Knight
Sr Staff Analytics Engineer| UK Data Science | Digital Services Solutions
GE Aviation

T: +44 (0)23 8024 7237 | 
LinkedIn<http://www.linkedin.com/in/dr-peter-knight-6b001732>
WebEx: https://emeetings.webex.com/meet/pr108008065 | Telecon: 4090615# (dial 
numbers 
here<https://www.intercallonline.com/listNumbersByCode.action?confCode=4090615>)


AutoExtReply


> Cannot persist PySpark ML Pipeline model that includes custom Transformer
> -------------------------------------------------------------------------
>
>                 Key: SPARK-17025
>                 URL: https://issues.apache.org/jira/browse/SPARK-17025
>             Project: Spark
>          Issue Type: New Feature
>          Components: ML, PySpark
>    Affects Versions: 2.0.0
>            Reporter: Nicholas Chammas
>            Priority: Minor
>
> Following the example in [this Databricks blog 
> post|https://databricks.com/blog/2016/05/31/apache-spark-2-0-preview-machine-learning-model-persistence.html]
>  under "Python tuning", I'm trying to save an ML Pipeline model.
> This pipeline, however, includes a custom transformer. When I try to save the 
> model, the operation fails because the custom transformer doesn't have a 
> {{_to_java}} attribute.
> {code}
> Traceback (most recent call last):
>   File ".../file.py", line 56, in <module>
>     model.bestModel.save('model')
>   File 
> "/usr/local/Cellar/apache-spark/2.0.0/libexec/python/lib/pyspark.zip/pyspark/ml/pipeline.py",
>  line 222, in save
>   File 
> "/usr/local/Cellar/apache-spark/2.0.0/libexec/python/lib/pyspark.zip/pyspark/ml/pipeline.py",
>  line 217, in write
>   File 
> "/usr/local/Cellar/apache-spark/2.0.0/libexec/python/lib/pyspark.zip/pyspark/ml/util.py",
>  line 93, in __init__
>   File 
> "/usr/local/Cellar/apache-spark/2.0.0/libexec/python/lib/pyspark.zip/pyspark/ml/pipeline.py",
>  line 254, in _to_java
> AttributeError: 'PeoplePairFeaturizer' object has no attribute '_to_java'
> {code}
> Looking at the source code for 
> [ml/base.py|https://github.com/apache/spark/blob/acaf2a81ad5238fd1bc81e7be2c328f40c07e755/python/pyspark/ml/base.py],
>  I see that not even the base Transformer class has such an attribute.
> I'm assuming this is missing functionality that is intended to be patched up 
> (i.e. [like 
> this|https://github.com/apache/spark/blob/acaf2a81ad5238fd1bc81e7be2c328f40c07e755/python/pyspark/ml/classification.py#L1421-L1433]).
> I'm not sure if there is an existing JIRA for this (my searches didn't turn 
> up clear results).



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to