Mark Tabladillo created SPARK-21915:
---------------------------------------

             Summary: Model 1 and Model 2 ParamMaps Missing
                 Key: SPARK-21915
                 URL: https://issues.apache.org/jira/browse/SPARK-21915
             Project: Spark
          Issue Type: Bug
          Components: ML, PySpark
    Affects Versions: 2.2.0, 2.1.1, 2.1.0, 2.0.2, 2.0.1, 2.0.0, 1.6.3, 1.6.2, 
1.6.1, 1.6.0, 1.5.2, 1.5.1, 1.5.0
            Reporter: Mark Tabladillo
            Priority: Minor


The original Scala code says
println("Model 2 was fit using parameters: " + model2.parent.extractParamMap)

The parent is lr

There is no method for accessing parent as is done in Scala.

----

This code has been tested in Python, and returns values consistent with Scala


Proposing to call the lr variable instead of model1 or model2



----
This patch was tested with Spark 2.1.0 comparing the Scala and PySpark results. 
Pyspark returns nothing at present for those two print lines.

The output for model2 in PySpark should be

{Param(parent='LogisticRegression_4187be538f744d5a9090', name='tol', doc='the 
convergence tolerance for iterative algorithms (>= 0).'): 1e-06,
Param(parent='LogisticRegression_4187be538f744d5a9090', name='elasticNetParam', 
doc='the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the 
penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.'): 0.0,
Param(parent='LogisticRegression_4187be538f744d5a9090', name='predictionCol', 
doc='prediction column name.'): 'prediction',
Param(parent='LogisticRegression_4187be538f744d5a9090', name='featuresCol', 
doc='features column name.'): 'features',
Param(parent='LogisticRegression_4187be538f744d5a9090', name='labelCol', 
doc='label column name.'): 'label',
Param(parent='LogisticRegression_4187be538f744d5a9090', name='probabilityCol', 
doc='Column name for predicted class conditional probabilities. Note: Not all 
models output well-calibrated probability estimates! These probabilities should 
be treated as confidences, not precise probabilities.'): 'myProbability',
Param(parent='LogisticRegression_4187be538f744d5a9090', 
name='rawPredictionCol', doc='raw prediction (a.k.a. confidence) column 
name.'): 'rawPrediction',
Param(parent='LogisticRegression_4187be538f744d5a9090', name='family', doc='The 
name of family which is a description of the label distribution to be used in 
the model. Supported options: auto, binomial, multinomial'): 'auto',
Param(parent='LogisticRegression_4187be538f744d5a9090', name='fitIntercept', 
doc='whether to fit an intercept term.'): True,
Param(parent='LogisticRegression_4187be538f744d5a9090', name='threshold', 
doc='Threshold in binary classification prediction, in range [0, 1]. If 
threshold and thresholds are both set, they must match.e.g. if threshold is p, 
then thresholds must be equal to [1-p, p].'): 0.55,
Param(parent='LogisticRegression_4187be538f744d5a9090', 
name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).'): 2,
Param(parent='LogisticRegression_4187be538f744d5a9090', name='maxIter', 
doc='max number of iterations (>= 0).'): 30,
Param(parent='LogisticRegression_4187be538f744d5a9090', name='regParam', 
doc='regularization parameter (>= 0).'): 0.1,
Param(parent='LogisticRegression_4187be538f744d5a9090', name='standardization', 
doc='whether to standardize the training features before fitting the model.'): 
True}



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to