[
https://issues.apache.org/jira/browse/SPARK-22417?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Wenchen Fan resolved SPARK-22417.
---------------------------------
Resolution: Fixed
Fix Version/s: 2.3.0
Issue resolved by pull request 19646
[https://github.com/apache/spark/pull/19646]
> createDataFrame from a pandas.DataFrame reads datetime64 values as longs
> ------------------------------------------------------------------------
>
> Key: SPARK-22417
> URL: https://issues.apache.org/jira/browse/SPARK-22417
> Project: Spark
> Issue Type: Bug
> Components: PySpark
> Affects Versions: 2.2.0
> Reporter: Bryan Cutler
> Fix For: 2.3.0
>
>
> When trying to create a Spark DataFrame from an existing Pandas DataFrame
> using {{createDataFrame}}, columns with datetime64 values are converted as
> long values. This is only when the schema is not specified.
> {code}
> In [2]: import pandas as pd
> ...: from datetime import datetime
> ...:
> In [3]: pdf = pd.DataFrame({"ts": [datetime(2017, 10, 31, 1, 1, 1)]})
> In [4]: df = spark.createDataFrame(pdf)
> In [5]: df.show()
> +-------------------+
> | ts|
> +-------------------+
> |1509411661000000000|
> +-------------------+
> In [6]: df.schema
> Out[6]: StructType(List(StructField(ts,LongType,true)))
> {code}
> Spark should interpret a datetime64\[D\] value to DateType and other
> datetime64 values to TImestampType.
--
This message was sent by Atlassian JIRA
(v6.4.14#64029)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]