[ 
https://issues.apache.org/jira/browse/SPARK-20162?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16387668#comment-16387668
 ] 

Caio Quirino da Silva commented on SPARK-20162:
-----------------------------------------------

[~hyukjin.kwon] And yes, I think also it's more specific to Avro's mapping from 
decimal to string, when I try to read, the databrick's avro API translates the 
field as String instead of number/BigDecimal, and the Spark SQL/Catalyst throws 
the higher precision validation exception.

I have found also a workaround for handling BigDecimal (and still need to test):

https://stackoverflow.com/questions/40952441/spark-case-class-decimal-type-encoder-error-cannot-up-cast-from-decimal

> Reading data from MySQL - Cannot up cast from decimal(30,6) to decimal(38,18)
> -----------------------------------------------------------------------------
>
>                 Key: SPARK-20162
>                 URL: https://issues.apache.org/jira/browse/SPARK-20162
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.1.0
>            Reporter: Miroslav Spehar
>            Priority: Major
>
> While reading data from MySQL, type conversion doesn't work for Decimal type 
> when the decimal in database is of lower precision/scale than the one spark 
> expects.
> Error:
> Exception in thread "main" org.apache.spark.sql.AnalysisException: Cannot up 
> cast `DECIMAL_AMOUNT` from decimal(30,6) to decimal(38,18) as it may truncate
> The type path of the target object is:
> - field (class: "org.apache.spark.sql.types.Decimal", name: "DECIMAL_AMOUNT")
> - root class: "com.misp.spark.Structure"
> You can either add an explicit cast to the input data or choose a higher 
> precision type of the field in the target object;
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveUpCast$$fail(Analyzer.scala:2119)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$$anonfun$apply$34$$anonfun$applyOrElse$14.applyOrElse(Analyzer.scala:2141)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$$anonfun$apply$34$$anonfun$applyOrElse$14.applyOrElse(Analyzer.scala:2136)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:288)
>       at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:287)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:293)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5$$anonfun$apply$11.apply(TreeNode.scala:360)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:245)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:245)
>       at scala.collection.immutable.List.foreach(List.scala:381)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:245)
>       at scala.collection.immutable.List.map(List.scala:285)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:358)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:329)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:293)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionDown$1(QueryPlan.scala:248)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$1(QueryPlan.scala:258)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$6.apply(QueryPlan.scala:267)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:267)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:236)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$$anonfun$apply$34.applyOrElse(Analyzer.scala:2136)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$$anonfun$apply$34.applyOrElse(Analyzer.scala:2132)
>       at 
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:61)
>       at 
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:61)
>       at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
>       at 
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:60)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$.apply(Analyzer.scala:2132)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$.apply(Analyzer.scala:2117)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:85)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:82)
>       at 
> scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
>       at scala.collection.immutable.List.foldLeft(List.scala:84)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:82)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:74)
>       at scala.collection.immutable.List.foreach(List.scala:381)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:74)
>       at 
> org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.resolveAndBind(ExpressionEncoder.scala:258)
>       at org.apache.spark.sql.Dataset.<init>(Dataset.scala:209)
>       at org.apache.spark.sql.Dataset.<init>(Dataset.scala:167)
>       at org.apache.spark.sql.Dataset$.apply(Dataset.scala:58)
>       at org.apache.spark.sql.Dataset.as(Dataset.scala:376)
>       at com.misp.spark.CalculationEngine$.main(CalculationEngine.scala:109)
>       at com.misp.spark.CalculationEngine.main(CalculationEngine.scala)
> Process finished with exit code 1



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to