sadhan sood created SPARK-4520:
----------------------------------
Summary: SparkSQL exception when reading certain columns from a
parquet file
Key: SPARK-4520
URL: https://issues.apache.org/jira/browse/SPARK-4520
Project: Spark
Issue Type: Bug
Components: SQL
Reporter: sadhan sood
I am seeing this issue with spark sql throwing an exception when trying to read
selective columns from a thrift parquet file and also when caching them.
On some further digging, I was able to narrow it down to at-least one
particular column type: map<string, set<string>> to be causing this issue. To
reproduce this I created a test thrift file with a very basic schema and stored
some sample data in a parquet file:
Test.thrift
===========
typedef binary SomeId
enum SomeExclusionCause {
WHITELIST = 1,
HAS_PURCHASE = 2,
}
struct SampleThriftObject {
10: string col_a;
20: string col_b;
30: string col_c;
40: optional map<SomeExclusionCause, set<SomeId>> col_d;
}
=============
And loading the data in spark through schemaRDD:
import org.apache.spark.sql.SchemaRDD
val sqlContext = new org.apache.spark.sql.SQLContext(sc);
val parquetFile = "/path/to/generated/parquet/file"
val parquetFileRDD = sqlContext.parquetFile(parquetFile)
parquetFileRDD.printSchema
root
|-- col_a: string (nullable = true)
|-- col_b: string (nullable = true)
|-- col_c: string (nullable = true)
|-- col_d: map (nullable = true)
| |-- key: string
| |-- value: array (valueContainsNull = true)
| | |-- element: string (containsNull = false)
parquetFileRDD.registerTempTable("test")
sqlContext.cacheTable("test")
sqlContext.sql("select col_a from test").collect() <-- see the exception stack
here
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in
stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID
0, localhost): parquet.io.ParquetDecodingException: Can not read value at 0 in
block -1 in file file:/tmp/xyz/part-r-00000.parquet
at
parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:213)
at
parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:204)
at
org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:145)
at
org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:388)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at
scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at
scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at
scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.rdd.RDD$$anonfun$16.apply(RDD.scala:780)
at org.apache.spark.rdd.RDD$$anonfun$16.apply(RDD.scala:780)
at
org.apache.spark.SparkContext$$anonfun$runJob$3.apply(SparkContext.scala:1223)
at
org.apache.spark.SparkContext$$anonfun$runJob$3.apply(SparkContext.scala:1223)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:56)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:195)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.ArrayIndexOutOfBoundsException: -1
at java.util.ArrayList.elementData(ArrayList.java:418)
at java.util.ArrayList.get(ArrayList.java:431)
at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95)
at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95)
at parquet.io.PrimitiveColumnIO.getLast(PrimitiveColumnIO.java:80)
at parquet.io.PrimitiveColumnIO.isLast(PrimitiveColumnIO.java:74)
at
parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:282)
at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:131)
at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:96)
at
parquet.filter2.compat.FilterCompat$NoOpFilter.accept(FilterCompat.java:136)
at parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:96)
at
parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:126)
at
parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:193)
... 27 more
If you take out the col_d from the thrift file, the problem goes away. The
problem also shows up when trying to read the particular column without caching
the table first. The same file can be dumped/read using parquet-tools just
fine. Here is the file dump using parquet-tools:
row group 0
--------------------------------------------------------------------------------
col_a: BINARY UNCOMPRESSED DO:0 FPO:4 SZ:89/89/1.00 VC:9 ENC [more]...
col_b: BINARY UNCOMPRESSED DO:0 FPO:93 SZ:89/89/1.00 VC:9 EN [more]...
col_c: BINARY UNCOMPRESSED DO:0 FPO:182 SZ:89/89/1.00 VC:9 E [more]...
col_d:
.map:
..key: BINARY UNCOMPRESSED DO:0 FPO:271 SZ:29/29/1.00 VC:9 E [more]...
..value:
...value_tuple: BINARY UNCOMPRESSED DO:0 FPO:300 SZ:29/29/1.00 VC:9 E [more]...
col_a TV=9 RL=0 DL=1
----------------------------------------------------------------------------
page 0: DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9
col_b TV=9 RL=0 DL=1
----------------------------------------------------------------------------
page 0: DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9
col_c TV=9 RL=0 DL=1
----------------------------------------------------------------------------
page 0: DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9
col_d.map.key TV=9 RL=1 DL=2
----------------------------------------------------------------------------
page 0: DLE:RLE RLE:RLE VLE:PLAIN SZ:12 VC:9
col_d.map.value.value_tuple TV=9 RL=2 DL=4
----------------------------------------------------------------------------
page 0: DLE:RLE RLE:RLE VLE:PLAIN SZ:12 VC:9
BINARY col_a
--------------------------------------------------------------------------------
*** row group 1 of 1, values 1 to 9 ***
value 1: R:1 D:1 V:a1
value 2: R:1 D:1 V:a2
value 3: R:1 D:1 V:a3
value 4: R:1 D:1 V:a4
value 5: R:1 D:1 V:a5
value 6: R:1 D:1 V:a6
value 7: R:1 D:1 V:a7
value 8: R:1 D:1 V:a8
value 9: R:1 D:1 V:a9
BINARY col_b
--------------------------------------------------------------------------------
*** row group 1 of 1, values 1 to 9 ***
value 1: R:1 D:1 V:b1
value 2: R:1 D:1 V:b2
value 3: R:1 D:1 V:b3
value 4: R:1 D:1 V:b4
value 5: R:1 D:1 V:b5
value 6: R:1 D:1 V:b6
value 7: R:1 D:1 V:b7
value 8: R:1 D:1 V:b8
value 9: R:1 D:1 V:b9
BINARY col_c
--------------------------------------------------------------------------------
*** row group 1 of 1, values 1 to 9 ***
value 1: R:1 D:1 V:c1
value 2: R:1 D:1 V:c2
value 3: R:1 D:1 V:c3
value 4: R:1 D:1 V:c4
value 5: R:1 D:1 V:c5
value 6: R:1 D:1 V:c6
value 7: R:1 D:1 V:c7
value 8: R:1 D:1 V:c8
value 9: R:1 D:1 V:c9
BINARY col_d.map.key
--------------------------------------------------------------------------------
*** row group 1 of 1, values 1 to 9 ***
value 1: R:0 D:0 V:<null>
value 2: R:0 D:0 V:<null>
value 3: R:0 D:0 V:<null>
value 4: R:0 D:0 V:<null>
value 5: R:0 D:0 V:<null>
value 6: R:0 D:0 V:<null>
value 7: R:0 D:0 V:<null>
value 8: R:0 D:0 V:<null>
value 9: R:0 D:0 V:<null>
BINARY col_d.map.value.value_tuple
--------------------------------------------------------------------------------
*** row group 1 of 1, values 1 to 9 ***
value 1: R:0 D:0 V:<null>
value 2: R:0 D:0 V:<null>
value 3: R:0 D:0 V:<null>
value 4: R:0 D:0 V:<null>
value 5: R:0 D:0 V:<null>
value 6: R:0 D:0 V:<null>
value 7: R:0 D:0 V:<null>
value 8: R:0 D:0 V:<null>
value 9: R:0 D:0 V:<null>
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]