[
https://issues.apache.org/jira/browse/SPARK-24320?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Hyukjin Kwon resolved SPARK-24320.
----------------------------------
Resolution: Duplicate
> Cannot read file names with spaces
> -----------------------------------
>
> Key: SPARK-24320
> URL: https://issues.apache.org/jira/browse/SPARK-24320
> Project: Spark
> Issue Type: Bug
> Components: Spark Core, SQL
> Affects Versions: 2.2.0
> Reporter: Zachary Radtka
> Priority: Major
>
> I am trying to read from a file on HDFS that has space in the file name, e.g.
> "file 1.csv" and I get a `java.io.FileNotFoundException: File does not exist`
> error.
> The versions of software I am using are:
> * Spark: 2.2.0.2.6.3.0-235
> * Scala: version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
> As an reproducible example I have the same file in HDFS named "file.csv" and
> "file 1.csv":
> {code:none}
> $ hdfs dfs -ls /tmp
> rw-rr- 3 hdfs hdfs 441646 2018-05-18 18:45 /tmp/file 1.csv
> rw-rr- 3 hdfs hdfs 441646 2018-05-18 18:45 /tmp/file.csv{code}
>
> The following script was used to successfully read from the file that does
> not have a space in the name:
> {code:java}
> scala> val if1 = "/tmp/file.csv" if1: String = /tmp/file.csv scala> val
> origTable = spark.read.format("csv").option("header",
> "true").option("delimiter", ",").option("multiLine", true).option("escape",
> "\"").load(if1); origTable: org.apache.spark.sql.DataFrame = [DATA REDACTED]
> scala> origTable.take(2) res3: Array[org.apache.spark.sql.Row] = Array([DATA
> REDACTED])
> {code}
>
> The same script was used to try and read from the file that has a space in
> the name:
> {code:java}
> scala> val if2 = "/tmp/file 1.csv"
> if2: String = /tmp/file 1.csv
> scala> val origTable = spark.read.format("csv").option("header",
> "true").option("delimiter", ",").option("multiLine", true).option("escape",
> "\"").load(if2);
> origTable: org.apache.spark.sql.DataFrame = [DATA REDACTED]
> scala> origTable.take(2)
> 18/05/18 18:58:40 ERROR Executor: Exception in task 0.0 in stage 8.0 (TID 8)
> java.io.FileNotFoundException: File does not exist: /tmp/file%201.csv
> at
> org.apache.hadoop.hdfs.server.namenode.INodeFile.valueOf(INodeFile.java:71)
> at
> org.apache.hadoop.hdfs.server.namenode.INodeFile.valueOf(INodeFile.java:61)
> at
> org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocationsInt(FSNamesystem.java:2025)
> at
> org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocations(FSNamesystem.java:1996)
> at
> org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocations(FSNamesystem.java:1909)
> at
> org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.getBlockLocations(NameNodeRpcServer.java:700)
> at
> org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.getBlockLocations(ClientNamenodeProtocolServerSideTranslatorPB.java:377)
> at
> org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
> at
> org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:640)
> at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:982)
> at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2351)
> at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2347)
> at java.security.AccessController.doPrivileged(Native Method)
> at javax.security.auth.Subject.doAs(Subject.java:422)
> at
> org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1866)
> at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2347)
> It is possible the underlying files have been updated. You can explicitly
> invalidate the cache in Spark by running 'REFRESH TABLE tableName' command in
> SQL or by recreating the Dataset/DataFrame involved.
> at
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.org$apache$spark$sql$execution$datasources$FileScanRDD$$anon$$readCurrentFile(FileScanRDD.scala:127)
> at
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:174)
> at
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:105)
> at
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
> Source)
> at
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
> at
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:234)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
> at org.apache.spark.scheduler.Task.run(Task.scala:108)
> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> at java.lang.Thread.run(Thread.java:745)
> 18/05/18 18:58:40 WARN TaskSetManager: Lost task 0.0 in stage 8.0 (TID 8,
> localhost, executor driver): java.io.FileNotFoundException: File does not
> exist: /tmp/file%201.csv
> at
> org.apache.hadoop.hdfs.server.namenode.INodeFile.valueOf(INodeFile.java:71)
> at
> org.apache.hadoop.hdfs.server.namenode.INodeFile.valueOf(INodeFile.java:61)
> at
> org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocationsInt(FSNamesystem.java:2025)
> at
> org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocations(FSNamesystem.java:1996)
> at
> org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getBlockLocations(FSNamesystem.java:1909)
> at
> org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.getBlockLocations(NameNodeRpcServer.java:700)
> at
> org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.getBlockLocations(ClientNamenodeProtocolServerSideTranslatorPB.java:377)
> at
> org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
> at
> org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:640)
> at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:982)
> at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2351)
> at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2347)
> at java.security.AccessController.doPrivileged(Native Method)
> at javax.security.auth.Subject.doAs(Subject.java:422)
> at
> org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1866)
> at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2347)
> {code}
> The underlying error is `java.io.FileNotFoundException: File does not exist:
> /tmp/file%201.csv`. It seems that the CSV reader is URL encoding the path and
> hence the file is not found.
> I also tested out specifying the file location in HDFS, `val if2 =
> "hdfs:///tmp/file 1.csv"`, and I received the same error.
> I also tested to ensure that the problem does not exist with Sparks textFile
> reader. It had no problem reading the file:
> {code}
> scala> sc.textFile(if2).take(2)
> res5: Array[String] = Array(DATA REDACTED)
> {code}
> One interesting thing to note is that `printSchema` does work, but when
> trying to do any operation on the file, a `FileNotFoundError` occurs.
> The temporary work around for this problem is removing spaces from filenames.
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]