[
https://issues.apache.org/jira/browse/SPARK-25371?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Victor Alor updated SPARK-25371:
--------------------------------
Description:
When `VectorAssembler ` is given an empty array as its inputColumns it throws
an opaque error. In versions less than 2.3 `VectorAssembler` it simply appends
a column containing empty vectors.
{code:java}
val inputCols = Array()
val outputCols = Array("A")
val vectorAssembler = new VectorAssembler()
.setInputCols(inputCols)
.setOutputCol(outputCols)
vectorAssmbler.fit(data).transform(df)
{code}
In versions 2.3 > this throws the exception below
{code:java}
org.apache.spark.sql.AnalysisException: cannot resolve 'named_struct()' due to
data type mismatch: input to function named_struct requires at least one
argument;;
{code}
Whereas in versions less than 2.3 it just adds a column containing an empty
vector.
I'm not certain if this is an intentional choice or an actual bug. If this is a
bug, the `VectorAssembler` should be modified to append an empty vector column
if it detects no inputCols.
If it is a design decision it would be nice to throw a human readable exception
explicitly stating inputColumns must not be empty. The current error is
somewhat opaque.
was:
When `VectorAssembler ` is given an empty array as its inputColumns it throws
an opaque error. In versions less than 2.3 `VectorAssembler` it simply appends
a column containing empty vectors.
{code:java}
val inputCols = Array()
val outputCols = Array("A")
val vectorAssembler = new VectorAssembler()
.setInputCols(inputCols)
.setOutputCol(outputCols)
vectorAssmbler.fit(data).transform(df)
{code}
In versions 2.3 > this throws the exception below
{code:java}
org.apache.spark.sql.AnalysisException: cannot resolve 'named_struct()' due to
data type mismatch: input to function named_struct requires at least one
argument;;
{code}
Whereas in versions less than 2.3 it just adds a column containing an empty
vector.
I'm not certain if this is an intentional choice or an actual bug. If this is a
bug, the `VectorAssembler` should be modified to append an empty vector column
if it detects no inputCols. If it is a design decision it would be nice to
throw a human readable exception explicitly stating inputColumns must not be
empty. The current error is somewhat opaque.
> Vector Assembler with no input columns throws an exception
> ----------------------------------------------------------
>
> Key: SPARK-25371
> URL: https://issues.apache.org/jira/browse/SPARK-25371
> Project: Spark
> Issue Type: Bug
> Components: ML, MLlib
> Affects Versions: 2.3.0, 2.3.1
> Reporter: Victor Alor
> Priority: Trivial
>
> When `VectorAssembler ` is given an empty array as its inputColumns it throws
> an opaque error. In versions less than 2.3 `VectorAssembler` it simply
> appends a column containing empty vectors.
>
> {code:java}
> val inputCols = Array()
> val outputCols = Array("A")
> val vectorAssembler = new VectorAssembler()
> .setInputCols(inputCols)
> .setOutputCol(outputCols)
> vectorAssmbler.fit(data).transform(df)
> {code}
> In versions 2.3 > this throws the exception below
> {code:java}
> org.apache.spark.sql.AnalysisException: cannot resolve 'named_struct()' due
> to data type mismatch: input to function named_struct requires at least one
> argument;;
> {code}
> Whereas in versions less than 2.3 it just adds a column containing an empty
> vector.
> I'm not certain if this is an intentional choice or an actual bug. If this is
> a bug, the `VectorAssembler` should be modified to append an empty vector
> column if it detects no inputCols.
>
> If it is a design decision it would be nice to throw a human readable
> exception explicitly stating inputColumns must not be empty. The current
> error is somewhat opaque.
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]