[ 
https://issues.apache.org/jira/browse/SPARK-4785?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14237649#comment-14237649
 ] 

Cheng Lian commented on SPARK-4785:
-----------------------------------

Looked into this a bit. Seems that this issue is caused by a UDF contract 
change in Hive 0.13.1. In Hive 0.12.0, it's always safe to construct and 
initialize a fresh UDF object on worker side, while in Hive 0.13.1, UDF objects 
should only be initialized on driver side and then serialized to the worker 
side.

Thanks [~chenghao] for helping investigating this issue!

> When called with arguments referring column fields, PMOD throws NPE
> -------------------------------------------------------------------
>
>                 Key: SPARK-4785
>                 URL: https://issues.apache.org/jira/browse/SPARK-4785
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>            Reporter: Cheng Lian
>            Priority: Blocker
>
> Reproducible when compiled with {{-Phive-0.13.1}}, {{-Phive0.12.0}} is OK.
> Reproduction steps with {{hive/console}}:
> {code}
> scala> loadTestTable("src")
> scala> sql("SELECT PMOD(key, 10) FROM src LIMIT 1").collect()
> ...
> 14/12/08 15:11:31 INFO DAGScheduler: Job 0 failed: runJob at 
> basicOperators.scala:141, took 0.235788 s
> org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in 
> stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 
> (TID 0, localhost): java.lang.NullPointerException
>         at 
> org.apache.hadoop.hive.ql.udf.generic.GenericUDFBaseNumeric.initialize(GenericUDFBaseNumeric.java:109)
>         at 
> org.apache.hadoop.hive.ql.udf.generic.GenericUDF.initializeAndFoldConstants(GenericUDF.java:116)
>         at 
> org.apache.spark.sql.hive.HiveGenericUdf.returnInspector$lzycompute(hiveUdfs.scala:156)
>         at 
> org.apache.spark.sql.hive.HiveGenericUdf.returnInspector(hiveUdfs.scala:155)
>         at org.apache.spark.sql.hive.HiveGenericUdf.eval(hiveUdfs.scala:174)
>         at 
> org.apache.spark.sql.catalyst.expressions.Alias.eval(namedExpressions.scala:92)
>         at 
> org.apache.spark.sql.catalyst.expressions.InterpretedMutableProjection.apply(Projection.scala:68)
>         at 
> org.apache.spark.sql.catalyst.expressions.InterpretedMutableProjection.apply(Projection.scala:52)
>         at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>         at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>         at scala.collection.Iterator$$anon$10.next(Iterator.scala:312)
>         at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>         at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>         at 
> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>         at 
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>         at 
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>         at 
> scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>         at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>         at 
> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>         at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>         at 
> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>         at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>         at 
> org.apache.spark.sql.execution.Limit$$anonfun$4.apply(basicOperators.scala:141)
>         at 
> org.apache.spark.sql.execution.Limit$$anonfun$4.apply(basicOperators.scala:141)
>         at 
> org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1314)
>         at 
> org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1314)
>         at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
>         at org.apache.spark.scheduler.Task.run(Task.scala:56)
>         at 
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:196)
>         at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>         at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>         at java.lang.Thread.run(Thread.java:745)
> Driver stacktrace:
>         at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214)
>         at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203)
>         at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202)
>         at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>         at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>         at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202)
>         at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
>         at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
>         at scala.Option.foreach(Option.scala:236)
>         at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696)
>         at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420)
>         at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
>         at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundReceive(DAGScheduler.scala:1375)
>         at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
>         at akka.actor.ActorCell.invoke(ActorCell.scala:487)
>         at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)
>         at akka.dispatch.Mailbox.run(Mailbox.scala:220)
>         at 
> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393)
>         at 
> scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>         at 
> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>         at 
> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>         at 
> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
> {code}
> This issue is introduced in [PR 
> #3109|https://github.com/apache/spark/pull/3109/files#diff-010a66b2d9b5e8a991c7b23f666a2036R156],
>  where {{GenericUDF.initialize}} was replaced by 
> {{GenericUDF.initializeAndFoldConstants}}, which then calls 
> {{GenericUDFBaseNumeric.initialize}} in case of {{PMOD}}. However, 
> {{GenericUDFBaseNumeric.initialize}} needs to access the current 
> {{SessionState}} 
> [\[1\]|https://github.com/apache/hive/blob/release-0.13.1/ql/src/java/org/apache/hadoop/hive/ql/udf/generic/GenericUDFBaseNumeric.java#L109],
>  which only exists on the driver side. Thus, when executed on executor side, 
> an NPE is thrown.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to