[
https://issues.apache.org/jira/browse/SPARK-25966?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16680901#comment-16680901
]
Xiao Li commented on SPARK-25966:
---------------------------------
Thank you for reporting this. I think this is not an issue. Please provide more
info and then we can investigate more.
> "EOF Reached the end of stream with bytes left to read" while reading/writing
> to Parquets
> -----------------------------------------------------------------------------------------
>
> Key: SPARK-25966
> URL: https://issues.apache.org/jira/browse/SPARK-25966
> Project: Spark
> Issue Type: Bug
> Components: SQL
> Affects Versions: 2.4.0
> Environment: Spark 2.4.0 (built from RC5 tag) running Hadoop 3.1.1 on
> top of a Mesos cluster. Both input and output Parquet files are on S3.
> Reporter: Alessandro Andrioni
> Priority: Major
>
> I was persistently getting the following exception while trying to run one
> Spark job we have using Spark 2.4.0. It went away after I regenerated from
> scratch all the input Parquet files (generated by another Spark job also
> using Spark 2.4.0).
> Is there a chance that Spark is writing (quite rarely) corrupted Parquet
> files?
> {code:java}
> org.apache.spark.SparkException: Job aborted.
> at
> org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:196)
> at
> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
> at
> org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
> at
> org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
> at
> org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
> at
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
> at
> org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
> at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
> at
> org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
> at
> org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
> at
> org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:668)
> at
> org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:668)
> at
> org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
> at
> org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
> at
> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
> at
> org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:668)
> at
> org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:276)
> at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:270)
> at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:228)
> at
> org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:557)
> (...)
> Caused by: org.apache.spark.SparkException: Job aborted due to stage failure:
> Task 312 in stage 682.0 failed 4 times, most recent failure: Lost task 312.3
> in stage 682.0 (TID 235229, 10.130.29.78, executor 77): java.io.EOFException:
> Reached the end of stream with 996 bytes left to read
> at
> org.apache.parquet.io.DelegatingSeekableInputStream.readFully(DelegatingSeekableInputStream.java:104)
> at
> org.apache.parquet.io.DelegatingSeekableInputStream.readFullyHeapBuffer(DelegatingSeekableInputStream.java:127)
> at
> org.apache.parquet.io.DelegatingSeekableInputStream.readFully(DelegatingSeekableInputStream.java:91)
> at
> org.apache.parquet.hadoop.ParquetFileReader$ConsecutiveChunkList.readAll(ParquetFileReader.java:1174)
> at
> org.apache.parquet.hadoop.ParquetFileReader.readNextRowGroup(ParquetFileReader.java:805)
> at
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.checkEndOfRowGroup(VectorizedParquetRecordReader.java:301)
> at
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:256)
> at
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:159)
> at
> org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
> at
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:101)
> at
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:181)
> at
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:101)
> at
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage109.scan_nextBatch_0$(Unknown
> Source)
> at
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage109.processNext(Unknown
> Source)
> at
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
> at
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$11$$anon$1.hasNext(WholeStageCodegenExec.scala:619)
> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
> at
> org.apache.spark.shuffle.sort.UnsafeShuffleWriter.write(UnsafeShuffleWriter.java:187)
> at
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
> at
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
> at org.apache.spark.scheduler.Task.run(Task.scala:121)
> at
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
> at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> at java.lang.Thread.run(Thread.java:748)
> {code}
> This job used to work fine with Spark 2.2.1, and succeeded once we
> regenerated the inputs. This is also one of three jobs that had this issue
> out of the 6000+ we tested.
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]