[ 
https://issues.apache.org/jira/browse/SPARK-4817?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14242177#comment-14242177
 ] 

宿荣全 edited comment on SPARK-4817 at 12/11/14 6:59 AM:
------------------------------------------------------

[~srowen]
Always call {{foreachRDD}}, and operate on all of the RDD, and then call {{take 
}} on the RDD to get a few elements to print. It can achieve the effect, but it 
is more complicated.
for example:
1.val dstream = stream.map->filter->..foreachRDD(rdd => {
      val array = rdd.collect;
      var result = Array[(String,String)]();
      result = if (array.size > 5) array.take(5) else array.take(array.size);
      result foreach println;
    })
2.val dstream = stream.map->filter->foreachRDD(rdd => {
      val rddarray = ssc.sparkContext.runJob(rdd, (iter: Iterator[(String, 
String)]) => iter.toArray);
      val array = Array.concat(rddarray: _*);
      var result = Array[(String,String)]();
      result = if (array.size > 5) array.take(5) else array.take(array.size);
      result foreach println;
    })
This two samples can achieve the effect. From the design perspective streaming 
direct manipulation of the RDD is not a good design.and I think the method 
{{foreachRDD}}  is generally not used in coding. 
Generally when streaming register action by  through the following 6 methods. 
Those methods all called method {{foreachRDD}}.
*
{color:blue}
# DStream.foreach
# DStream.saveAsObjectFiles
# DStream.saveAsTextFiles
# PairDStreamFunctions.saveAsHadoopFiles
# PairDStreamFunctions.saveAsNewAPIHadoopFiles
{color}
*


was (Author: surq):
[~srowen]
Always call foreachRDD, and operate on all of the RDD, and then call take on 
the RDD to get a few elements to print. It can achieve the effect, but it is 
more complicated.
for example:
1.val dstream = stream.map->filter->..foreachRDD(rdd => {
      val array = rdd.collect

      var result = Array[(String,String)]()

      result = if (array.size > 5) array.take(5) else array.take(array.size)

      result foreach println
    })
2.val dstream = stream.map->filter->foreachRDD(rdd => {
      val rddarray = ssc.sparkContext.runJob(rdd, (iter: Iterator[(String, 
String)]) => iter.toArray)

      val array = Array.concat(rddarray: _*)

      var result = Array[(String,String)]()

      result = if (array.size > 5) array.take(5) else array.take(array.size)

      result foreach println
    })
This two samples can achieve the effect. From the design perspective streaming 
direct manipulation of the RDD is not a good design.and I think the method 
'foreachRDD'  is generally not used in coding. 
Generally when streaming register action by  through the following 6 methods. 
Those methods all called method 'foreachRDD'.
1.DStream.foreach
2.DStream.saveAsObjectFiles
3.DStream.saveAsTextFiles
4.PairDStreamFunctions.saveAsHadoopFiles
5.PairDStreamFunctions.saveAsNewAPIHadoopFiles

> [streaming]Print the specified number of data and handle all of the elements 
> in RDD
> -----------------------------------------------------------------------------------
>
>                 Key: SPARK-4817
>                 URL: https://issues.apache.org/jira/browse/SPARK-4817
>             Project: Spark
>          Issue Type: New Feature
>          Components: Streaming
>            Reporter: 宿荣全
>            Priority: Minor
>
> Dstream.print function:Print 10 elements and handle 11 elements.
> A new function based on Dstream.print function is presented:
> the new function:
> Print the specified number of data and handle all of the elements in RDD.
> there is a work scene:
> val dstream = stream.map->filter->mapPartitions->print
> the data after filter need update database in mapPartitions,but don't need 
> print each data,only need to print the top 20 for view the data processing.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to