Davies Liu created SPARK-4866:
---------------------------------
Summary: Support StructType as key in MapType
Key: SPARK-4866
URL: https://issues.apache.org/jira/browse/SPARK-4866
Project: Spark
Issue Type: Bug
Components: PySpark, SQL
Reporter: Davies Liu
http://apache-spark-user-list.1001560.n3.nabble.com/Error-when-Applying-schema-to-a-dictionary-with-a-Tuple-as-key-td20716.html
Hi Guys,
Im running a spark cluster in AWS with Spark 1.1.0 in EC2
I am trying to convert a an RDD with tuple
(u'string', int , {(int, int): int, (int, int): int})
to a schema rdd using the schema:
{code}
fields = [StructField('field1',StringType(),True),
StructField('field2',IntegerType(),True),
StructField('field3',MapType(StructType([StructField('field31',IntegerType(),True),
StructField('field32',IntegerType(),True)]),IntegerType(),True),True)
]
schema = StructType(fields)
# generate the schemaRDD with the defined schema
schemaRDD = sqc.applySchema(RDD, schema)
{code}
But when I add "field3" to the schema, it throws an execption:
{code}
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/root/spark/python/pyspark/rdd.py", line 1153, in take
res = self.context.runJob(self, takeUpToNumLeft, p, True)
File "/root/spark/python/pyspark/context.py", line 770, in runJob
it = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd,
javaPartitions, allowLocal)
File "/root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", line
538, in __call__
File "/root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line
300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling
z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in
stage 28.0 failed 4 times, most recent failure: Lost task 0.3 in stage 28.0
(TID 710, ip-172-31-29-120.ec2.internal): net.razorvine.pickle.PickleException:
couldn't introspect javabean: java.lang.IllegalArgumentException: wrong number
of arguments
net.razorvine.pickle.Pickler.put_javabean(Pickler.java:603)
net.razorvine.pickle.Pickler.dispatch(Pickler.java:299)
net.razorvine.pickle.Pickler.save(Pickler.java:125)
net.razorvine.pickle.Pickler.put_map(Pickler.java:321)
net.razorvine.pickle.Pickler.dispatch(Pickler.java:286)
net.razorvine.pickle.Pickler.save(Pickler.java:125)
net.razorvine.pickle.Pickler.put_arrayOfObjects(Pickler.java:412)
net.razorvine.pickle.Pickler.dispatch(Pickler.java:195)
net.razorvine.pickle.Pickler.save(Pickler.java:125)
net.razorvine.pickle.Pickler.put_arrayOfObjects(Pickler.java:412)
net.razorvine.pickle.Pickler.dispatch(Pickler.java:195)
net.razorvine.pickle.Pickler.save(Pickler.java:125)
net.razorvine.pickle.Pickler.dump(Pickler.java:95)
net.razorvine.pickle.Pickler.dumps(Pickler.java:80)
org.apache.spark.sql.SchemaRDD$$anonfun$javaToPython$1$$anonfun$apply$2.apply(SchemaRDD.scala:417)
org.apache.spark.sql.SchemaRDD$$anonfun$javaToPython$1$$anonfun$apply$2.apply(SchemaRDD.scala:417)
scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:331)
org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply$mcV$sp(PythonRDD.scala:209)
org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
org.apache.spark.api.python.PythonRDD$WriterThread$$anonfun$run$1.apply(PythonRDD.scala:184)
org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1311)
org.apache.spark.api.python.PythonRDD$WriterThread.run(PythonRDD.scala:183)
Driver stacktrace:
at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1185)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1174)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1173)
at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
at scala.Option.foreach(Option.scala:236)
at
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688)
at
org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1391)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at
akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at
scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at
scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at
scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
{code}
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]