[
https://issues.apache.org/jira/browse/SPARK-13510?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16825756#comment-16825756
]
belvey edited comment on SPARK-13510 at 4/25/19 5:58 AM:
---------------------------------------------------------
@Mike in my case I set it to '536870912' (512m) ,and it can be set to '512m' as
spark will treat them equally.
was (Author: belvey):
@Mike in my case I set it to '536870912' (512m) ,and it can be set to '512m'
as spark will treat it equally.
> Shuffle may throw FetchFailedException: Direct buffer memory
> ------------------------------------------------------------
>
> Key: SPARK-13510
> URL: https://issues.apache.org/jira/browse/SPARK-13510
> Project: Spark
> Issue Type: Bug
> Components: Spark Core
> Affects Versions: 1.6.0
> Reporter: Hong Shen
> Priority: Major
> Attachments: spark-13510.diff
>
>
> In our cluster, when I test spark-1.6.0 with a sql, it throw exception and
> failed.
> {code}
> 16/02/17 15:36:03 INFO storage.ShuffleBlockFetcherIterator: Sending request
> for 1 blocks (915.4 MB) from 10.196.134.220:7337
> 16/02/17 15:36:03 INFO shuffle.ExternalShuffleClient: External shuffle fetch
> from 10.196.134.220:7337 (executor id 122)
> 16/02/17 15:36:03 INFO client.TransportClient: Sending fetch chunk request 0
> to /10.196.134.220:7337
> 16/02/17 15:36:36 WARN server.TransportChannelHandler: Exception in
> connection from /10.196.134.220:7337
> java.lang.OutOfMemoryError: Direct buffer memory
> at java.nio.Bits.reserveMemory(Bits.java:658)
> at java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:123)
> at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:306)
> at io.netty.buffer.PoolArena$DirectArena.newChunk(PoolArena.java:645)
> at io.netty.buffer.PoolArena.allocateNormal(PoolArena.java:228)
> at io.netty.buffer.PoolArena.allocate(PoolArena.java:212)
> at io.netty.buffer.PoolArena.allocate(PoolArena.java:132)
> at
> io.netty.buffer.PooledByteBufAllocator.newDirectBuffer(PooledByteBufAllocator.java:271)
> at
> io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:155)
> at
> io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:146)
> at
> io.netty.buffer.AbstractByteBufAllocator.ioBuffer(AbstractByteBufAllocator.java:107)
> at
> io.netty.channel.AdaptiveRecvByteBufAllocator$HandleImpl.allocate(AdaptiveRecvByteBufAllocator.java:104)
> at
> io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:117)
> at
> io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
> at
> io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
> at
> io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
> at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
> at
> io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
> at java.lang.Thread.run(Thread.java:744)
> 16/02/17 15:36:36 ERROR client.TransportResponseHandler: Still have 1
> requests outstanding when connection from /10.196.134.220:7337 is closed
> 16/02/17 15:36:36 ERROR shuffle.RetryingBlockFetcher: Failed to fetch block
> shuffle_3_81_2, and will not retry (0 retries)
> {code}
> The reason is that when shuffle a big block(like 1G), task will allocate
> the same memory, it will easily throw "FetchFailedException: Direct buffer
> memory".
> If I add -Dio.netty.noUnsafe=true spark.executor.extraJavaOptions, it will
> throw
> {code}
> java.lang.OutOfMemoryError: Java heap space
> at
> io.netty.buffer.PoolArena$HeapArena.newUnpooledChunk(PoolArena.java:607)
> at io.netty.buffer.PoolArena.allocateHuge(PoolArena.java:237)
> at io.netty.buffer.PoolArena.allocate(PoolArena.java:215)
> at io.netty.buffer.PoolArena.allocate(PoolArena.java:132)
> {code}
>
> In mapreduce shuffle, it will firstly judge whether the block can cache in
> memery, but spark doesn't.
> If the block is more than we can cache in memory, we should write to disk.
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]