[
https://issues.apache.org/jira/browse/SPARK-27691?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Michael Tong updated SPARK-27691:
---------------------------------
Summary: Issue when running queries using filter predicates on pandas
GROUPED_AGG udafs (was: Issue when running queries using filter predicates on
pandas GROUPED_AGG udfs)
> Issue when running queries using filter predicates on pandas GROUPED_AGG udafs
> ------------------------------------------------------------------------------
>
> Key: SPARK-27691
> URL: https://issues.apache.org/jira/browse/SPARK-27691
> Project: Spark
> Issue Type: Bug
> Components: Input/Output
> Affects Versions: 2.4.2
> Reporter: Michael Tong
> Priority: Major
>
> Am currently running pyspark 2.4.2 and I am currently unable to run the
> following code.
>
> {code:java}
> from pyspark.sql import functions, types
> import pandas as pd
> import random
> # initialize test data
> test_data = [[False, int(random.random() * 2)] for i in range(10000)]
> test_data = pd.DataFrame(test_data, columns=['bool_value', 'int_value'])
> # pandas udf
> pandas_any_udf = functions.pandas_udf(lambda x: x.any(), types.BooleanType(),
> functions.PandasUDFType.GROUPED_AGG)
> # create spark DataFrame and build the query
> test_df = spark.createDataFrame(test_data)
> test_df =
> test_df.groupby('int_value').agg(pandas_any_udf('bool_value').alias('bool_any_result'))
> test_df = test_df.filter(functions.col('bool_any_result') == True)
> # write to output
> test_df.write.parquet('/tmp/mtong/write_test', mode='overwrite')
> {code}
>
> Below is a truncated error message.
>
> {code:java}
> Py4JJavaError: An error occurred while calling o1125.parquet. :
> org.apache.spark.SparkException: Job aborted.
> ...
> Exchange hashpartitioning(int_value#123L, 2000)
> +- *(1) Filter (<lambda>(bool_value#122) = true)
> +- Scan ExistingRDD arrow[bool_value#122,int_value#123L]
> ...
> Caused by: java.lang.UnsupportedOperationException: Cannot evaluate
> expression: <lambda>(input[0, boolean, true]){code}
>
>
> What appears to be happening is that the query optimizer incorrectly pushes
> up the filter predicate on bool_any_result before the group by operation.
> This causes the query to error out before spark attempts to execute the
> query. I have also tried running a variant of this query with
> functions.count() as the aggregation function and the query ran fine, so I
> believe that this is an error that only affects pandas udfs.
>
> Variant of query with standard aggregation function
> {code:java}
> test_df = spark.createDataFrame(test_data)
> test_df =
> test_df.groupby('int_value').agg(functions.count('bool_value').alias('bool_counts'))
> test_df = test_df.filter(functions.col('bool_counts') > 0)
> {code}
>
>
>
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]