[
https://issues.apache.org/jira/browse/SPARK-13333?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Hyukjin Kwon resolved SPARK-13333.
----------------------------------
Resolution: Incomplete
> DataFrame filter + randn + unionAll has bad interaction
> -------------------------------------------------------
>
> Key: SPARK-13333
> URL: https://issues.apache.org/jira/browse/SPARK-13333
> Project: Spark
> Issue Type: Bug
> Components: SQL
> Affects Versions: 1.4.2, 1.6.1, 2.0.0
> Reporter: Joseph K. Bradley
> Priority: Major
> Labels: bulk-closed
>
> Buggy workflow
> * Create a DataFrame df0
> * Filter df0
> * Add a randn column
> * Create a copy of the DataFrame
> * unionAll the two DataFrames
> This fails, where randn produces the same results on the original DataFrame
> and the copy before unionAll but fails to do so after unionAll. Removing the
> filter fixes the problem.
> The bug can be reproduced on master:
> {code}
> import org.apache.spark.sql.functions.randn
> val df0 = sqlContext.createDataFrame(Seq(0, 1).map(Tuple1(_))).toDF("id")
> // Removing the following filter() call makes this give the expected result.
> val df1 = df0.filter(col("id") === 0).withColumn("b", randn(12345))
> println("DF1")
> df1.show()
> val df2 = df1.select("id", "b")
> println("DF2")
> df2.show() // same as df1.show(), as expected
> val df3 = df1.unionAll(df2)
> println("DF3")
> df3.show() // NOT two copies of df1, which is unexpected
> {code}
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]