[
https://issues.apache.org/jira/browse/SPARK-15682?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Hyukjin Kwon resolved SPARK-15682.
----------------------------------
Resolution: Incomplete
> Hive partition write looks for root hdfs folder for existence
> -------------------------------------------------------------
>
> Key: SPARK-15682
> URL: https://issues.apache.org/jira/browse/SPARK-15682
> Project: Spark
> Issue Type: Bug
> Components: Spark Core
> Affects Versions: 1.6.1
> Reporter: Dipankar
> Priority: Major
> Labels: bulk-closed
>
> Scenario:
> I am using the below program to create new partition based on the current
> date which signifies the run date.
> However, it fails citing hdfs folder already exists. It checks the root
> folder and not new partition value.
> Is partitionBy clause actually not checking the hive metastore or folder till
> proc_date= some value. ? and it's just a way to create folders based on
> partition key. Not any way related to hive partition ??
> Alternatively, should i use
> result.write.format("orc").save("test.sms_outbound_view_orc/proc_date=2016-05-30")
> to achieve the result.
> But this will not update hive metastore with new partition details.
> Is spark orc support not equivalent to HCatStorer API?
> My hive table is built with proc_date as partition column.
> Source code :
> result.registerTempTable("result_tab")
> val result_partition = sqlContext.sql("FROM result_tab select
> *,'"+curr_date+"' as proc_date")
> result_partition.write.format("orc").partitionBy("proc_date").save("test.sms_outbound_view_orc")
> Exception
> 16/05/31 15:57:34 INFO ParseDriver: Parsing command: FROM result_tab select
> *,'2016-05-31' as proc_date
> 16/05/31 15:57:34 INFO ParseDriver: Parse Completed
> Exception in thread "main" org.apache.spark.sql.AnalysisException: path
> hdfs://hdpprod/user/dipankar.ghosal/test.sms_outbound_view_orc already
> exists.;
> at
> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:76)
> at
> org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:57)
> at
> org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:57)
> at
> org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:69)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
> at
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
> at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
> at
> org.apache.spark.sql.SQLContext$QueryExecution.toRdd$lzycompute(SQLContext.scala:933)
> at
> org.apache.spark.sql.SQLContext$QueryExecution.toRdd(SQLContext.scala:933)
> at
> org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:197)
> at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:146)
> at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:137)
> at SampleApp$.main(SampleApp.scala:31)
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]