[
https://issues.apache.org/jira/browse/SPARK-15746?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Hyukjin Kwon updated SPARK-15746:
---------------------------------
Labels: bulk-closed (was: )
> SchemaUtils.checkColumnType with VectorUDT prints instance details in error
> message
> -----------------------------------------------------------------------------------
>
> Key: SPARK-15746
> URL: https://issues.apache.org/jira/browse/SPARK-15746
> Project: Spark
> Issue Type: Improvement
> Components: ML
> Reporter: Nick Pentreath
> Priority: Minor
> Labels: bulk-closed
>
> Currently, many feature transformers in {{ml}} use
> {{SchemaUtils.checkColumnType(schema, ..., new VectorUDT)}} to check the
> column type is a ({{ml.linalg}}) vector.
> The resulting error message contains "instance" info for the {{VectorUDT}},
> i.e. something like this:
> {code}
> java.lang.IllegalArgumentException: requirement failed: Column features must
> be of type org.apache.spark.ml.linalg.VectorUDT@3bfc3ba7 but was actually
> StringType.
> {code}
> A solution would either be to amend {{SchemaUtils.checkColumnType}} to print
> the error message using {{getClass.getName}}, or to create a {{private[spark]
> case object VectorUDT extends VectorUDT}} for convenience, since it is used
> so often (and incidentally this would make it easier to put {{VectorUDT}}
> into lists of data types e.g. schema validation, UDAFs etc).
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]