Jingyuan Wang created SPARK-30288: ------------------------------------- Summary: Failed to write valid Parquet files when column names contains special characters like spaces Key: SPARK-30288 URL: https://issues.apache.org/jira/browse/SPARK-30288 Project: Spark Issue Type: Bug Components: SQL Affects Versions: 2.4.3 Reporter: Jingyuan Wang
When I tried to write Parquet files using PySpark with columns containing some special characters in their names, it threw the following exception: {code} org.apache.spark.sql.AnalysisException: Attribute name "col 1" contains invalid character(s) among " ,;{}()\n\t=". Please use alias to rename it.; at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter$.checkConversionRequirement(ParquetSchemaConverter.scala:583) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter$.checkFieldName(ParquetSchemaConverter.scala:570) at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport$$anonfun$setSchema$2.apply(ParquetWriteSupport.scala:444) at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport$$anonfun$setSchema$2.apply(ParquetWriteSupport.scala:444) at scala.collection.immutable.List.foreach(List.scala:392) at org.apache.spark.sql.execution.datasources.parquet.ParquetWriteSupport$.setSchema(ParquetWriteSupport.scala:444) at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat.prepareWrite(ParquetFileFormat.scala:111) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:103) at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102) at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80) at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676) at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676) at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73) at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676) at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:285) at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:271) at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:229) at org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:566) at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.base/java.lang.reflect.Method.invoke(Method.java:566) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:238) at java.base/java.lang.Thread.run(Thread.java:834) {code} However, it is supported by Pandas for both reading and writing. This validity check of column names seems to be outdated and should be removed. {code} >>> import pandas as pd >>> df = pd.DataFrame(data={'col(1)': [1, 2], 'col 2': [3, 4]}) >>> df.to_parquet('special_columns.parquet') >>> df_written = pd.read_parquet('special_columns.parquet') >>> df_written col(1) col 2 0 1 3 1 2 4 {code} -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org