[ https://issues.apache.org/jira/browse/SPARK-5016?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14312284#comment-14312284 ]
Manoj Kumar commented on SPARK-5016: ------------------------------------ Well, I got mislead by the Jira description which says Gaussian Initialization. I was thinking it was this block of code, that initializes the k Gaussian distributions that needs to be parallelized. {code} val samples = breezeData.takeSample(withReplacement = true, k * nSamples, seed) (Array.fill(k)(1.0 / k), Array.tabulate(k) { i => val slice = samples.view(i * nSamples, (i + 1) * nSamples) new MultivariateGaussian(vectorMean(slice), initCovariance(slice)) }) {code} And next time, please please don't post the code (or atleast give a spoiler alert), it spoils the fun of fixing it :P > GaussianMixtureEM should distribute matrix inverse for large numFeatures, k > --------------------------------------------------------------------------- > > Key: SPARK-5016 > URL: https://issues.apache.org/jira/browse/SPARK-5016 > Project: Spark > Issue Type: Improvement > Components: MLlib > Affects Versions: 1.2.0 > Reporter: Joseph K. Bradley > > If numFeatures or k are large, GMM EM should distribute the matrix inverse > computation for Gaussian initialization. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org