[
https://issues.apache.org/jira/browse/SPARK-33277?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17253881#comment-17253881
]
Apache Spark commented on SPARK-33277:
--------------------------------------
User 'ueshin' has created a pull request for this issue:
https://github.com/apache/spark/pull/30899
> Python/Pandas UDF right after off-heap vectorized reader could cause executor
> crash.
> ------------------------------------------------------------------------------------
>
> Key: SPARK-33277
> URL: https://issues.apache.org/jira/browse/SPARK-33277
> Project: Spark
> Issue Type: Bug
> Components: PySpark, SQL
> Affects Versions: 2.4.7, 3.0.1
> Reporter: Takuya Ueshin
> Priority: Major
>
> Python/Pandas UDF right after off-heap vectorized reader could cause executor
> crash.
> E.g.,:
> {code:java}
> spark.range(0, 100000, 1, 1).write.parquet(path)
> spark.conf.set("spark.sql.columnVector.offheap.enabled", True)
> def f(x):
> return 0
> fUdf = udf(f, LongType())
> spark.read.parquet(path).select(fUdf('id')).head()
> {code}
> This is because, the Python evaluation consumes the parent iterator in a
> separate thread and it consumes more data from the parent even after the task
> ends and the parent is closed. If an off-heap column vector exists in the
> parent iterator, it could cause segmentation fault which crashes the executor.
--
This message was sent by Atlassian Jira
(v8.3.4#803005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]