Sun Fulin created SPARK-5711:
--------------------------------

             Summary: Sort Shuffle performance issues about using AppendOnlyMap 
for large data sets
                 Key: SPARK-5711
                 URL: https://issues.apache.org/jira/browse/SPARK-5711
             Project: Spark
          Issue Type: Bug
    Affects Versions: 1.2.0
         Environment: hbase-0.98.6-cdh5.2.0 phoenix-4.2.2
            Reporter: Sun Fulin


Recently we had caught performance issues when using spark 1.2.0 to read data 
from hbase and do some summary work.
Our scenario means to : read large data sets from hbase (maybe 100G+ file) , 
form hbaseRDD, transform to schemardd, 
groupby and aggregate the data while got fewer new summary data sets, loading 
data into hbase (phoenix).

Our major issue lead to : aggregate large datasets to get summary data sets 
would consume too long time (1 hour +) , while that
should be supposed not so bad performance. We got the dump file attached and 
stacktrace from jstack like the following:

>From the stacktrace and dump file we can identify that processing large 
>datasets would cause frequent AppendOnlyMap growing, and 
leading to huge map entrysize. We had referenced the source code of 
org.apache.spark.util.collection.AppendOnlyMap and found that 
the map had been initialized with capacity of 64. That would be too small for 
our use case. 

Thread 22432: (state = IN_JAVA)
- org.apache.spark.util.collection.AppendOnlyMap.growTable() @bci=87, line=224 
(Compiled frame; information may be imprecise)
- org.apache.spark.util.collection.SizeTrackingAppendOnlyMap.growTable() 
@bci=1, line=38 (Interpreted frame)
- org.apache.spark.util.collection.AppendOnlyMap.incrementSize() @bci=22, 
line=198 (Compiled frame)
- org.apache.spark.util.collection.AppendOnlyMap.changeValue(java.lang.Object, 
scala.Function2) @bci=201, line=145 (Compiled frame)
- 
org.apache.spark.util.collection.SizeTrackingAppendOnlyMap.changeValue(java.lang.Object,
 scala.Function2) @bci=3, line=32 (Compiled frame)
- 
org.apache.spark.util.collection.ExternalSorter.insertAll(scala.collection.Iterator)
 @bci=141, line=205 (Compiled frame)
- 
org.apache.spark.shuffle.sort.SortShuffleWriter.write(scala.collection.Iterator)
 @bci=74, line=58 (Interpreted frame)
- 
org.apache.spark.scheduler.ShuffleMapTask.runTask(org.apache.spark.TaskContext) 
@bci=169, line=68 (Interpreted frame)
- 
org.apache.spark.scheduler.ShuffleMapTask.runTask(org.apache.spark.TaskContext) 
@bci=2, line=41 (Interpreted frame)
- org.apache.spark.scheduler.Task.run(long) @bci=77, line=56 (Interpreted frame)
- org.apache.spark.executor.Executor$TaskRunner.run() @bci=310, line=196 
(Interpreted frame)
- 
java.util.concurrent.ThreadPoolExecutor.runWorker(java.util.concurrent.ThreadPoolExecutor$Worker)
 @bci=95, line=1145 (Interpreted frame)
- java.util.concurrent.ThreadPoolExecutor$Worker.run() @bci=5, line=615 
(Interpreted frame)
- java.lang.Thread.run() @bci=11, line=744 (Interpreted frame)


Thread 22431: (state = IN_JAVA)
- org.apache.spark.util.collection.AppendOnlyMap.growTable() @bci=87, line=224 
(Compiled frame; information may be imprecise)
- org.apache.spark.util.collection.SizeTrackingAppendOnlyMap.growTable() 
@bci=1, line=38 (Interpreted frame)
- org.apache.spark.util.collection.AppendOnlyMap.incrementSize() @bci=22, 
line=198 (Compiled frame)
- org.apache.spark.util.collection.AppendOnlyMap.changeValue(java.lang.Object, 
scala.Function2) @bci=201, line=145 (Compiled frame)
- 
org.apache.spark.util.collection.SizeTrackingAppendOnlyMap.changeValue(java.lang.Object,
 scala.Function2) @bci=3, line=32 (Compiled frame)
- 
org.apache.spark.util.collection.ExternalSorter.insertAll(scala.collection.Iterator)
 @bci=141, line=205 (Compiled frame)
- 
org.apache.spark.shuffle.sort.SortShuffleWriter.write(scala.collection.Iterator)
 @bci=74, line=58 (Interpreted frame)
- 
org.apache.spark.scheduler.ShuffleMapTask.runTask(org.apache.spark.TaskContext) 
@bci=169, line=68 (Interpreted frame)
- 
org.apache.spark.scheduler.ShuffleMapTask.runTask(org.apache.spark.TaskContext) 
@bci=2, line=41 (Interpreted frame)
- org.apache.spark.scheduler.Task.run(long) @bci=77, line=56 (Interpreted frame)
- org.apache.spark.executor.Executor$TaskRunner.run() @bci=310, line=196 
(Interpreted frame)
- 
java.util.concurrent.ThreadPoolExecutor.runWorker(java.util.concurrent.ThreadPoolExecutor$Worker)
 @bci=95, line=1145 (Interpreted frame)
- java.util.concurrent.ThreadPoolExecutor$Worker.run() @bci=5, line=615 
(Interpreted frame)
- java.lang.Thread.run() @bci=11, line=744 (Interpreted frame)




--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to