[ 
https://issues.apache.org/jira/browse/SPARK-33792?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17267972#comment-17267972
 ] 

Gabor Barna commented on SPARK-33792:
-------------------------------------

Another flavor of probably the same issue
{code:java}
Caused by: java.lang.NullPointerException
        at 
java.util.concurrent.ConcurrentHashMap.putVal(ConcurrentHashMap.java:1011)
        at 
java.util.concurrent.ConcurrentHashMap.putAll(ConcurrentHashMap.java:1084)
        at 
org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider.getStore(HDFSBackedStateStoreProvider.scala:204)
        at 
org.apache.spark.sql.execution.streaming.state.StateStore$.get(StateStore.scala:371)
        at 
org.apache.spark.sql.execution.streaming.state.StateStoreRDD.compute(StateStoreRDD.scala:88)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
        at org.apache.spark.scheduler.Task.run(Task.scala:123)
        at 
org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
        at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748) {code}

> NullPointerException in HDFSBackedStateStoreProvider
> ----------------------------------------------------
>
>                 Key: SPARK-33792
>                 URL: https://issues.apache.org/jira/browse/SPARK-33792
>             Project: Spark
>          Issue Type: Bug
>          Components: Structured Streaming
>    Affects Versions: 2.4.4
>         Environment: emr-5.28.0
>            Reporter: Gabor Barna
>            Priority: Major
>
> Hi,
> We are getting NPEs with spark structured streaming from time-to-time. Here's 
> the stacktrace:
> {code:java}
> java.lang.NullPointerException
>       at 
> org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider$HDFSBackedStateStore$$anonfun$iterator$1.apply(HDFSBackedStateStoreProvider.scala:164)
>       at 
> org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider$HDFSBackedStateStore$$anonfun$iterator$1.apply(HDFSBackedStateStoreProvider.scala:163)
>       at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
>       at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
>       at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:463)
>       at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
>       at scala.collection.Iterator$JoinIterator.hasNext(Iterator.scala:220)
>       at 
> org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:31)
>       at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage3.processNext(Unknown
>  Source)
>       at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>       at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
>       at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
>       at 
> org.apache.spark.sql.kinesis.KinesisWriteTask.execute(KinesisWriteTask.scala:50)
>       at 
> org.apache.spark.sql.kinesis.KinesisWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$1.apply$mcV$sp(KinesisWriter.scala:40)
>       at 
> org.apache.spark.sql.kinesis.KinesisWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$1.apply(KinesisWriter.scala:40)
>       at 
> org.apache.spark.sql.kinesis.KinesisWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$1.apply(KinesisWriter.scala:40)
>       at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
>       at 
> org.apache.spark.sql.kinesis.KinesisWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(KinesisWriter.scala:40)
>       at 
> org.apache.spark.sql.kinesis.KinesisWriter$$anonfun$write$1$$anonfun$apply$mcV$sp$1.apply(KinesisWriter.scala:38)
>       at 
> org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)
>       at 
> org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$28.apply(RDD.scala:935)
>       at 
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
>       at 
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2101)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
>       at org.apache.spark.scheduler.Task.run(Task.scala:123)
>       at 
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
>       at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>       at java.lang.Thread.run(Thread.java:748) {code}
> As you can see we are using [https://github.com/qubole/kinesis-sql/] for 
> writing the kinesis queue, the state backend is HDFS.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to