[ 
https://issues.apache.org/jira/browse/SPARK-34545?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17291954#comment-17291954
 ] 

Baohe Zhang commented on SPARK-34545:
-------------------------------------

A simpler code to reproduce the error:
{code:python}
>>> from pyspark.sql.functions import udf
>>> from pyspark.sql.types import *
>>> 
>>> def udf1(data_type):
...     def u1(e):
...         return e[0]
...     return udf(u1, data_type)
... 
>>> df = spark.createDataFrame(
...   [((1.0, 1.0), (1, 1))],
...    ['c1', 'c2'])
>>> 
>>> 
>>> df = df.withColumn("c3", udf1(DoubleType())("c1"))
>>> df = df.withColumn("c4", udf1(IntegerType())("c2"))
>>> 
>>> # Show the results
... df.select("c3").show()
+---+
| c3|
+---+
|1.0|
+---+

>>> df.select("c4").show()
+---+
| c4|
+---+
|  1|
+---+

>>> df.select("c3", "c4").show()
+---+----+
| c3|  c4|
+---+----+
|1.0|null|
+---+----+
{code}

> PySpark Python UDF return inconsistent results when applying 2 UDFs with 
> different return type to 2 columns together
> --------------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-34545
>                 URL: https://issues.apache.org/jira/browse/SPARK-34545
>             Project: Spark
>          Issue Type: Bug
>          Components: PySpark, SQL
>    Affects Versions: 3.0.0
>            Reporter: Baohe Zhang
>            Priority: Blocker
>
> Python UDF returns inconsistent results between evaluating 2 columns together 
> and evaluating one by one.
> The issue occurs after we upgrading to spark3, so seems it doesn't exist in 
> spark2.
> How to reproduce it?
> {code:python}
> df = spark.createDataFrame([([(1.0, "1"), (1.0, "2"), (1.0, "3")], [(1, "1"), 
> (1, "2"), (1, "3")]), ([(2.0, "1"), (2.0, "2"), (2.0, "3")], [(2, "1"), (2, 
> "2"), (2, "3")]), ([(3.1, "1"), (3.1, "2"), (3.1, "3")], [(3, "1"), (3, "2"), 
> (3, "3")])], ['c1', 'c2'])
> from pyspark.sql.functions import udf
> from pyspark.sql.types import *
> def getLastElementWithTimeMaster(data_type):
>     def getLastElementWithTime(list_elm):
>         # x should be a list of (val, time)
>         y = sorted(list_elm, key=lambda x: x[1]) # default is ascending
>         return y[-1][0]
>     return udf(getLastElementWithTime, data_type)
> # Add 2 columns whcih apply Python UDF
> df = df.withColumn("c3", getLastElementWithTimeMaster(DoubleType())("c1"))
> df = df.withColumn("c4", getLastElementWithTimeMaster(IntegerType())("c2"))
> # Show the results
> df.select("c3").show()
> df.select("c4").show()
> df.select("c3", "c4").show()
> {code}
> Results:
> {noformat}
> >>> df.select("c3").show()
> +---+                                                                         
>   
> | c3|
> +---+
> |1.0|
> |2.0|
> |3.1|
> +---+
> >>> df.select("c4").show()
> +---+
> | c4|
> +---+
> |  1|
> |  2|
> |  3|
> +---+
> >>> df.select("c3", "c4").show()
> +---+----+
> | c3|  c4|
> +---+----+
> |1.0|null|
> |2.0|null|
> |3.1|   3|
> +---+----+
> {noformat}
> The test was done in branch-3.1 local mode.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to