[
https://issues.apache.org/jira/browse/SPARK-34564?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
kondziolka9ld updated SPARK-34564:
----------------------------------
Description:
Please consider a following scenario on *spark-3.0.1*:
{code:java}
scala> List(("some date", new Date(Int.MaxValue)), ("some corner case date",
new Date(Long.MaxValue))).toDF
java.lang.RuntimeException: Error while encoding:
java.lang.ArithmeticException: integer overflow
staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._1, true,
false) AS _1#0
staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, DateType,
fromJavaDate, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._2,
true, false) AS _2#1
at
org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:215)
at
org.apache.spark.sql.SparkSession.$anonfun$createDataset$1(SparkSession.scala:466)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238)
at scala.collection.immutable.List.foreach(List.scala:392)
at scala.collection.TraversableLike.map(TraversableLike.scala:238)
at scala.collection.TraversableLike.map$(TraversableLike.scala:231)
at scala.collection.immutable.List.map(List.scala:298)
at org.apache.spark.sql.SparkSession.createDataset(SparkSession.scala:466)
at org.apache.spark.sql.SQLContext.createDataset(SQLContext.scala:353)
at
org.apache.spark.sql.SQLImplicits.localSeqToDatasetHolder(SQLImplicits.scala:231)
... 51 elided
Caused by: java.lang.ArithmeticException: integer overflow
at java.lang.Math.toIntExact(Math.java:1011)
at
org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111)
at
org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(DateTimeUtils.scala)
at
org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown
Source)
at
org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:211)
... 60 more
{code}
In opposition to *spark-2.4.7* where it is possible to create dataframe with
such values:
{code:java}
scala> val df = List(("some date", new Date(Int.MaxValue)), ("some corner case
date", new Date(Long.MaxValue))).toDF
df: org.apache.spark.sql.DataFrame = [_1: string, _2: date]scala> df.show
+--------------------+-------------+
| _1| _2|
+--------------------+-------------+
| some date| 1970-01-25|
|some corner case ...|1701498-03-18|
+--------------------+-------------+
{code}
Anyway, I am aware of the fact that during collecting these data I will got
another result:
{code:java}
scala> df.collect
res10: Array[org.apache.spark.sql.Row] = Array([some date,1970-01-25], [some
corner case date,?498-03-18])
{code}
what seems to be natural because of behaviour of *java.sql.Date*:
{code:java}
scala> new java.sql.Date(Long.MaxValue)
res1: java.sql.Date = ?994-08-17
{code}
----
When it comes to easier reproduction, please consider:
{code:java}
scala> org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(new
java.sql.Date(Long.MaxValue))
java.lang.ArithmeticException: integer overflow
at java.lang.Math.toIntExact(Math.java:1011)
at
org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111)
... 47 elided
{code}
However, the question is even if such late dates are not supported, could it
fail in more gentle way?
was:
Please consider a following scenario on *spark-3.0.1*:
{code:java}
scala> List(("some date", new Date(Int.MaxValue)), ("some corner case date",
new Date(Long.MaxValue))).toDF
java.lang.RuntimeException: Error while encoding:
java.lang.ArithmeticException: integer overflow
staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._1, true,
false) AS _1#0
staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, DateType,
fromJavaDate, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._2,
true, false) AS _2#1
at
org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:215)
at
org.apache.spark.sql.SparkSession.$anonfun$createDataset$1(SparkSession.scala:466)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238)
at scala.collection.immutable.List.foreach(List.scala:392)
at scala.collection.TraversableLike.map(TraversableLike.scala:238)
at scala.collection.TraversableLike.map$(TraversableLike.scala:231)
at scala.collection.immutable.List.map(List.scala:298)
at org.apache.spark.sql.SparkSession.createDataset(SparkSession.scala:466)
at org.apache.spark.sql.SQLContext.createDataset(SQLContext.scala:353)
at
org.apache.spark.sql.SQLImplicits.localSeqToDatasetHolder(SQLImplicits.scala:231)
... 51 elided
Caused by: java.lang.ArithmeticException: integer overflow
at java.lang.Math.toIntExact(Math.java:1011)
at
org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111)
at
org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(DateTimeUtils.scala)
at
org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown
Source)
at
org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:211)
... 60 more
{code}
In opposition to *spark-2.4.7* where it is possible to create dataframe with
such values:
{code:java}
scala> val df = List(("some date", new Date(Int.MaxValue)), ("some corner case
date", new Date(Long.MaxValue))).toDF
df: org.apache.spark.sql.DataFrame = [_1: string, _2: date]scala> df.show
+--------------------+-------------+
| _1| _2|
+--------------------+-------------+
| some date| 1970-01-25|
|some corner case ...|1701498-03-18|
+--------------------+-------------+
{code}
Anyway, I am aware of the fact that during collecting these data I will got
another result:
{code:java}
scala> df.collect
res10: Array[org.apache.spark.sql.Row] = Array([some date,1970-01-25], [some
corner case date,?498-03-18])
{code}
what seems to be natural as:
{code:java}
scala> new java.sql.Date(Long.MaxValue)
res1: java.sql.Date = ?994-08-17
{code}
----
When it comes to easier reproduction, please consider:
{code:java}
scala> org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(new
java.sql.Date(Long.MaxValue))
java.lang.ArithmeticException: integer overflow
at java.lang.Math.toIntExact(Math.java:1011)
at
org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111)
... 47 elided
{code}
However, the question is even if such late dates are not supported, could it
fail in more gentle way?
> DateTimeUtils.fromJavaDate fails for very late dates during casting to Int
> --------------------------------------------------------------------------
>
> Key: SPARK-34564
> URL: https://issues.apache.org/jira/browse/SPARK-34564
> Project: Spark
> Issue Type: Question
> Components: SQL
> Affects Versions: 3.0.1
> Reporter: kondziolka9ld
> Priority: Major
>
> Please consider a following scenario on *spark-3.0.1*:
> {code:java}
> scala> List(("some date", new Date(Int.MaxValue)), ("some corner case date",
> new Date(Long.MaxValue))).toDF
> java.lang.RuntimeException: Error while encoding:
> java.lang.ArithmeticException: integer overflow
> staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType,
> fromString, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._1,
> true, false) AS _1#0
> staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$,
> DateType, fromJavaDate, knownnotnull(assertnotnull(input[0, scala.Tuple2,
> true]))._2, true, false) AS _2#1
> at
> org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:215)
> at
> org.apache.spark.sql.SparkSession.$anonfun$createDataset$1(SparkSession.scala:466)
> at
> scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238)
> at scala.collection.immutable.List.foreach(List.scala:392)
> at scala.collection.TraversableLike.map(TraversableLike.scala:238)
> at scala.collection.TraversableLike.map$(TraversableLike.scala:231)
> at scala.collection.immutable.List.map(List.scala:298)
> at org.apache.spark.sql.SparkSession.createDataset(SparkSession.scala:466)
> at org.apache.spark.sql.SQLContext.createDataset(SQLContext.scala:353)
> at
> org.apache.spark.sql.SQLImplicits.localSeqToDatasetHolder(SQLImplicits.scala:231)
> ... 51 elided
> Caused by: java.lang.ArithmeticException: integer overflow
> at java.lang.Math.toIntExact(Math.java:1011)
> at
> org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111)
> at
> org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(DateTimeUtils.scala)
> at
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown
> Source)
> at
> org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:211)
> ... 60 more
> {code}
> In opposition to *spark-2.4.7* where it is possible to create dataframe with
> such values:
> {code:java}
> scala> val df = List(("some date", new Date(Int.MaxValue)), ("some corner
> case date", new Date(Long.MaxValue))).toDF
> df: org.apache.spark.sql.DataFrame = [_1: string, _2: date]scala> df.show
> +--------------------+-------------+
> | _1| _2|
> +--------------------+-------------+
> | some date| 1970-01-25|
> |some corner case ...|1701498-03-18|
> +--------------------+-------------+
> {code}
> Anyway, I am aware of the fact that during collecting these data I will got
> another result:
> {code:java}
> scala> df.collect
> res10: Array[org.apache.spark.sql.Row] = Array([some date,1970-01-25], [some
> corner case date,?498-03-18])
> {code}
> what seems to be natural because of behaviour of *java.sql.Date*:
> {code:java}
> scala> new java.sql.Date(Long.MaxValue)
> res1: java.sql.Date = ?994-08-17
> {code}
>
> ----
> When it comes to easier reproduction, please consider:
> {code:java}
> scala> org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(new
> java.sql.Date(Long.MaxValue))
> java.lang.ArithmeticException: integer overflow
> at java.lang.Math.toIntExact(Math.java:1011)
> at
> org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111)
> ... 47 elided
> {code}
> However, the question is even if such late dates are not supported, could it
> fail in more gentle way?
>
--
This message was sent by Atlassian Jira
(v8.3.4#803005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]