Gavrilescu Laurentiu created SPARK-34644:
--------------------------------------------
Summary: UDF returning array followed by explode returns wrong
results
Key: SPARK-34644
URL: https://issues.apache.org/jira/browse/SPARK-34644
Project: Spark
Issue Type: Bug
Components: SQL
Affects Versions: 3.1.1
Reporter: Gavrilescu Laurentiu
*Applying an UDF followed by explode looks to be calling the UDF twice.*
Imagine having the following scenario:
1. you have a dataframe with some string columns
2. you have an expensive function that creates a score based on some string
input
3. you want to get all the distinct values from all the columns and their
score - there is an executor level cache that holds the score values for
strings to minimize the execution of the expensive function
consider the following code to reproduce it:
{code:java}
case class RowWithStrings(c1: String, c2: String, c3: String)
case class ValueScore(value: String, score: Double)
object Bug {
val columns: List[String] = List("c1", "c2", "c3")
def score(input: String): Double = {
// insert expensive function here
input.toDouble
}
def main(args: Array[String]) {
lazy val sparkSession: SparkSession = {
val sparkSession = SparkSession.builder.master("local[4]")
.getOrCreate()
sparkSession
}
// some cache over expensive operation
val cache: TrieMap[String, Double] = TrieMap[String, Double]()
// get scores for all columns in the row
val body = (row: Row) => {
val arr = ArrayBuffer[ValueScore]()
columns foreach {
column =>
val value = row.getAs[String](column)
if (!cache.contains(value)) {
val computedScore = score(value)
arr += ValueScore(value, computedScore)
cache(value) = computedScore
}
}
arr
}
val basicUdf = udf(body)
val values = (1 to 5) map {
idx =>
// repeated values
RowWithStrings(idx.toString, idx.toString, idx.toString)
}
import sparkSession.implicits._
val df = values.toDF("c1", "c2", "c3").persist()
val allCols = df.columns.map(col)
df.select(basicUdf(struct(allCols: _*)).as("valuesScore"))
.select(explode(col("valuesScore")))
.distinct()
.show()
}
}
{code}
this shows:
{code:java}
+---+
|col|
+---+
+---+
{code}
When adding persist before explode, the result is correct:
{code:java}
df.select(basicUdf(struct(allCols: _*)).as("valuesScore"))
.persist()
.select(explode(col("valuesScore")))
.distinct()
.show()
{code}
=>
{code:java}
+--------+
| col|
+--------+
|{2, 2.0}|
|{4, 4.0}|
|{3, 3.0}|
|{5, 5.0}|
|{1, 1.0}|
+--------+
{code}
--
This message was sent by Atlassian Jira
(v8.3.4#803005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]