[
https://issues.apache.org/jira/browse/SPARK-34646?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17301924#comment-17301924
]
loc nguyen commented on SPARK-34646:
------------------------------------
I am little confused with your response. What are information are u looking
for to receive.
> TreeNode bind issue for duplicate column name.
> ----------------------------------------------
>
> Key: SPARK-34646
> URL: https://issues.apache.org/jira/browse/SPARK-34646
> Project: Spark
> Issue Type: Bug
> Components: Spark Submit
> Affects Versions: 2.4.3
> Environment: Spark 2.4.3, Scala 2.11.8, Hadoop 3.2.1
> Reporter: loc nguyen
> Priority: Major
> Labels: spark
>
> I received a Spark {{TreeNodeException}} executing a union of two data
> frames. When I assign the union results to a DataFrame that will be returned
> by a function, this error occurs. However, I am able to assign the union
> results to a DataFrame that will not be returned. I have examined the schema
> for all the data frames participating in the code. The PT_Id is being
> duplicated. The PT_Id is duplicated and results in the failed search.
>
>
> {{21/03/04 19:58:28 ERROR Executor: Exception in task 2.0 in stage 2281.0
> (TID 5557)
> org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding
> attribute, tree: PT_ID#140575 at
> org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56)
> at
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:79)
> at
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:78)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:256)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:256)
> at
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:255)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:261)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:261)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:326)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:324)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:261)
> at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:245)
> at
> org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:78)
> at
> org.apache.spark.sql.catalyst.expressions.codegen.GeneratePredicate$.bind(GeneratePredicate.scala:45)
> at
> org.apache.spark.sql.catalyst.expressions.codegen.GeneratePredicate$.bind(GeneratePredicate.scala:40)
> at
> org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator.generate(CodeGenerator.scala:1190)
> at org.apache.spark.sql.execution.SparkPlan.newPredicate(SparkPlan.scala:403)
> at
> org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec.org$apache$spark$sql$execution$joins$BroadcastNestedLoopJoinExec$$boundCondition$lzycompute(BroadcastNestedLoopJoinExec.scala:87)
> at
> org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec.org$apache$spark$sql$execution$joins$BroadcastNestedLoopJoinExec$$boundCondition(BroadcastNestedLoopJoinExec.scala:85)
> at
> org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec$$anonfun$4$$anonfun$apply$2$$anonfun$apply$3.apply(BroadcastNestedLoopJoinExec.scala:191)
> at
> org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec$$anonfun$4$$anonfun$apply$2$$anonfun$apply$3.apply(BroadcastNestedLoopJoinExec.scala:191)
> at
> scala.collection.IndexedSeqOptimized$class.prefixLengthImpl(IndexedSeqOptimized.scala:38)
> at
> scala.collection.IndexedSeqOptimized$class.exists(IndexedSeqOptimized.scala:46)
> at scala.collection.mutable.ArrayOps$ofRef.exists(ArrayOps.scala:186)
> at
> org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec$$anonfun$4$$anonfun$apply$2.apply(BroadcastNestedLoopJoinExec.scala:191)
> at
> org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec$$anonfun$4$$anonfun$apply$2.apply(BroadcastNestedLoopJoinExec.scala:190)
> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:464)
> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
> at
> org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
> at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
> at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
> at org.apache.spark.scheduler.Task.run(Task.scala:121)
> at
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
> at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
> at java.lang.Thread.run(Thread.java:748)Caused by:
> java.lang.RuntimeException: Couldn't find PT_Id#140575 in
> [Name#34180,PT_Id#34181,PT_Id#127|#34180,PT_Id#34181,PT_Id#127]
> at scala.sys.package$.error(package.scala:27)
> at
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:85)
> at
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:79)
> at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
> ... 40 more}}
--
This message was sent by Atlassian Jira
(v8.3.4#803005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]