[
https://issues.apache.org/jira/browse/SPARK-34971?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
shezm updated SPARK-34971:
--------------------------
Description:
First , use the command to register a function in hive:
{code:java}
create function shezm.hello as 'test.Hello' using jar
'hdfs:///udf_test/udf_test.jar'
{code}
Then create view with the udf in hive1.1 , like
{code:java}
create view shezm.test_view AS select shezm.hello(name) as v from shezm.test;
{code}
and read it use spark , it will get an error :
{code:java}
Exception in thread "main" org.apache.spark.sql.AnalysisException: Undefined
function: 'shezm.hello'. This function is neither a registered temporary
function nor a permanent function registered in the database 'default'.; line 1
pos 7
at
org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15$$anonfun$applyOrElse$51.apply(Analyzer.scala:1355)
at
org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15$$anonfun$applyOrElse$51.apply(Analyzer.scala:1355)
at
org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15$$anonfun$applyOrElse$51.apply(Analyzer.scala:1355)
at
org.apache.spark.sql.catalyst.analysis.package$.withPosition(package.scala:53)
at
org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15.applyOrElse(Analyzer.scala:1354)
at
org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15.applyOrElse(Analyzer.scala:1346)
at
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:256)
at
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:256)
......
{code}
When I investigated this issue, I found hive1.x will wrap all udf with
backticks when create view with udf .like this:
{code:java}
hive> use shezm;
OK
Time taken: 0.999 seconds
hive> show create table test_view;
OK
CREATE VIEW `test_view` AS select `shezm.hello`(`test`.`id`) from `shezm`.`test`
Time taken: 1.761 seconds, Fetched: 1 row(s)
{code}
Spark will treat `shezm.hello` as a udf name, and cannot parse out the database
(hive can).
I read the SqlBase.g4 file, the characters wrapped in backticks will be treated
as complete strings, which seems to be a feature.
So, maybe this problem should be solved in AstBuilder#visitFunctionName()? By
adding a case?
was:
First , use the command to register a function in hive:
{code:java}
create function shezm.hello as 'test.Hello' using jar
'hdfs:///udf_test/udf_test.jar'
{code}
Then create view with the udf in hive1.1 , like
{code:java}
create view shezm.test_view AS select shezm.hello(name) as v from shezm.test;
{code}
and read it use spark , it will get an error :
{code:java}
Exception in thread "main" org.apache.spark.sql.AnalysisException: Undefined
function: 'shezm.hello'. This function is neither a registered temporary
function nor a permanent function registered in the database 'default'.; line 1
pos 7
at
org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15$$anonfun$applyOrElse$51.apply(Analyzer.scala:1355)
at
org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15$$anonfun$applyOrElse$51.apply(Analyzer.scala:1355)
at
org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15$$anonfun$applyOrElse$51.apply(Analyzer.scala:1355)
at
org.apache.spark.sql.catalyst.analysis.package$.withPosition(package.scala:53)
at
org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15.applyOrElse(Analyzer.scala:1354)
at
org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15.applyOrElse(Analyzer.scala:1346)
at
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:256)
at
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:256)
......
{code}
When I investigated this issue, I found hive1.x will wrap all udf with
backticks when create view with udf .like this:
{code:java}
hive> use shezm;
OK
Time taken: 0.999 seconds
hive> show create table test_view;
OK
CREATE VIEW `test_view` AS select `shezm.hello`(`test`.`id`) from `shezm`.`test`
Time taken: 1.761 seconds, Fetched: 1 row(s)
{code}
Spark will treat `shezm.hello` as a udf name, and cannot parse out the database
(hive can).
I read the SqlBase.g4 file, the characters wrapped in backticks will be treated
as complete strings, which seems to be a feature.
So, maybe this problem should be solved in AstBuilder#visitFunctionName()? By
adding a case?
> The view with udf created by hive1.x cannot be read by spark
> ------------------------------------------------------------
>
> Key: SPARK-34971
> URL: https://issues.apache.org/jira/browse/SPARK-34971
> Project: Spark
> Issue Type: Bug
> Components: SQL
> Affects Versions: 2.4.0
> Environment: hive 1.1.0
> spark 2.4
> Reporter: shezm
> Priority: Minor
>
> First , use the command to register a function in hive:
> {code:java}
> create function shezm.hello as 'test.Hello' using jar
> 'hdfs:///udf_test/udf_test.jar'
> {code}
>
> Then create view with the udf in hive1.1 , like
> {code:java}
> create view shezm.test_view AS select shezm.hello(name) as v from shezm.test;
> {code}
> and read it use spark , it will get an error :
> {code:java}
> Exception in thread "main" org.apache.spark.sql.AnalysisException: Undefined
> function: 'shezm.hello'. This function is neither a registered temporary
> function nor a permanent function registered in the database 'default'.; line
> 1 pos 7
> at
> org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15$$anonfun$applyOrElse$51.apply(Analyzer.scala:1355)
> at
> org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15$$anonfun$applyOrElse$51.apply(Analyzer.scala:1355)
> at
> org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15$$anonfun$applyOrElse$51.apply(Analyzer.scala:1355)
> at
> org.apache.spark.sql.catalyst.analysis.package$.withPosition(package.scala:53)
> at
> org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15.applyOrElse(Analyzer.scala:1354)
> at
> org.apache.spark.sql.catalyst.analysis.Analyzer$LookupFunctions$$anonfun$apply$15.applyOrElse(Analyzer.scala:1346)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:256)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:256)
> ......
> {code}
>
> When I investigated this issue, I found hive1.x will wrap all udf with
> backticks when create view with udf .like this:
> {code:java}
> hive> use shezm;
> OK
> Time taken: 0.999 seconds
> hive> show create table test_view;
> OK
> CREATE VIEW `test_view` AS select `shezm.hello`(`test`.`id`) from
> `shezm`.`test`
> Time taken: 1.761 seconds, Fetched: 1 row(s)
> {code}
> Spark will treat `shezm.hello` as a udf name, and cannot parse out the
> database (hive can).
> I read the SqlBase.g4 file, the characters wrapped in backticks will be
> treated as complete strings, which seems to be a feature.
>
> So, maybe this problem should be solved in AstBuilder#visitFunctionName()? By
> adding a case?
>
--
This message was sent by Atlassian Jira
(v8.3.4#803005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]