[ 
https://issues.apache.org/jira/browse/SPARK-36071?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17378935#comment-17378935
 ] 

Hyukjin Kwon commented on SPARK-36071:
--------------------------------------

[~vcshashank] can you show your codes?

> Spark driver requires large memory space for serialized results even there 
> are no data collected to the driver
> --------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-36071
>                 URL: https://issues.apache.org/jira/browse/SPARK-36071
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.4.3
>            Reporter: shashank
>            Priority: Major
>
> Executing with large partition is causing the data transferred to driver 
> exceed spark.driver.maxResultSize.
> Even when no data from the logic is being collected at by the driver. Looks 
> like spark is sending metadata back which is causing it to exceed.
> {code:java}
> spark.driver.maxResultSize=8g{code}
>  
> {code:java}
> Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: 
> Total size of serialized results of 104904 tasks (8.0 GB) is bigger than 
> spark.driver.maxResultSize (8.0 GB)Caused by: 
> org.apache.spark.SparkException: Job aborted due to stage failure: Total size 
> of serialized results of 104904 tasks (8.0 GB) is bigger than 
> spark.driver.maxResultSize (8.0 GB) at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2041)
>  at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2029)
>  at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2028)
>  at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>  at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2028) 
> at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
>  at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
>  at scala.Option.foreach(Option.scala:257) at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:966)
>  at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2262)
>  at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2211)
>  at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2200)
>  at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at 
> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:777) at 
> org.apache.spark.SparkContext.runJob(SparkContext.scala:2061) at 
> org.apache.spark.SparkContext.runJob(SparkContext.scala:2082) at 
> org.apache.spark.SparkContext.runJob(SparkContext.scala:2114) at 
> org.apache.spark.internal.io.SparkHadoopWriter$.write(SparkHadoopWriter.scala:78)
>  ... 54 more{code}



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to