[
https://issues.apache.org/jira/browse/SPARK-36277?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Hyukjin Kwon updated SPARK-36277:
---------------------------------
Description:
I am writing the steps to reproduce the issue for "count" pyspark api while
using mode as dropmalformed.
I have a csv sample file in s3 bucket . I am reading the file using pyspark api
for csv . I am reading the csv "without schema" and "with schema using mode
'dropmalformed' options in two different dataframes . While displaying the
"with schema using mode 'dropmalformed'" dataframe , the display looks good ,it
is not showing the malformed records .But when we apply count api on the
dataframe it gives the record count of actual file. I am expecting it should
give me valid record count .
here is the code used:-
{code}
without_schema_df=spark.read.csv("s3://noa-poc-lakeformation/data/test_files/sample.csv",header=True)
schema = StructType([ \
StructField("firstname",StringType(),True), \
StructField("middlename",StringType(),True), \
StructField("lastname",StringType(),True), \
StructField("id", StringType(), True), \
StructField("gender", StringType(), True), \
StructField("salary", IntegerType(), True) \
])
with_schema_df =
spark.read.csv("s3://noa-poc-lakeformation/data/test_files/sample.csv",header=True,schema=schema,mode="DROPMALFORMED")
print("The dataframe with schema")
with_schema_df.show()
print("The dataframe without schema")
without_schema_df.show()
cnt_with_schema=with_schema_df.count()
print("The records count from with schema df :"+str(cnt_with_schema))
cnt_without_schema=without_schema_df.count()
print("The records count from without schema df: "+str(cnt_without_schema))
{code}
here is the outputs screen shot 111.PNG is the outputs of the code and
inputfile.csv is the input to the code
was:
I am writing the steps to reproduce the issue for "count" pyspark api while
using mode as dropmalformed.
I have a csv sample file in s3 bucket . I am reading the file using pyspark api
for csv . I am reading the csv "without schema" and "with schema using mode
'dropmalformed' options in two different dataframes . While displaying the
"with schema using mode 'dropmalformed'" dataframe , the display looks good ,it
is not showing the malformed records .But when we apply count api on the
dataframe it gives the record count of actual file. I am expecting it should
give me valid record count .
here is the code used:-
```
without_schema_df=spark.read.csv("s3://noa-poc-lakeformation/data/test_files/sample.csv",header=True)
schema = StructType([ \
StructField("firstname",StringType(),True), \
StructField("middlename",StringType(),True), \
StructField("lastname",StringType(),True), \
StructField("id", StringType(), True), \
StructField("gender", StringType(), True), \
StructField("salary", IntegerType(), True) \
])
with_schema_df =
spark.read.csv("s3://noa-poc-lakeformation/data/test_files/sample.csv",header=True,schema=schema,mode="DROPMALFORMED")
print("The dataframe with schema")
with_schema_df.show()
print("The dataframe without schema")
without_schema_df.show()
cnt_with_schema=with_schema_df.count()
print("The records count from with schema df :"+str(cnt_with_schema))
cnt_without_schema=without_schema_df.count()
print("The records count from without schema df: "+str(cnt_without_schema))
```
here is the outputs screen shot 111.PNG is the outputs of the code and
inputfile.csv is the input to the code
> Issue with record count of data frame while reading in DropMalformed mode
> -------------------------------------------------------------------------
>
> Key: SPARK-36277
> URL: https://issues.apache.org/jira/browse/SPARK-36277
> Project: Spark
> Issue Type: Bug
> Components: PySpark
> Affects Versions: 2.4.3
> Reporter: anju
> Priority: Major
> Attachments: 111.PNG, Inputfile.PNG, sample.csv
>
>
> I am writing the steps to reproduce the issue for "count" pyspark api while
> using mode as dropmalformed.
> I have a csv sample file in s3 bucket . I am reading the file using pyspark
> api for csv . I am reading the csv "without schema" and "with schema using
> mode 'dropmalformed' options in two different dataframes . While displaying
> the "with schema using mode 'dropmalformed'" dataframe , the display looks
> good ,it is not showing the malformed records .But when we apply count api on
> the dataframe it gives the record count of actual file. I am expecting it
> should give me valid record count .
> here is the code used:-
> {code}
> without_schema_df=spark.read.csv("s3://noa-poc-lakeformation/data/test_files/sample.csv",header=True)
> schema = StructType([ \
> StructField("firstname",StringType(),True), \
> StructField("middlename",StringType(),True), \
> StructField("lastname",StringType(),True), \
> StructField("id", StringType(), True), \
> StructField("gender", StringType(), True), \
> StructField("salary", IntegerType(), True) \
> ])
> with_schema_df =
> spark.read.csv("s3://noa-poc-lakeformation/data/test_files/sample.csv",header=True,schema=schema,mode="DROPMALFORMED")
> print("The dataframe with schema")
> with_schema_df.show()
> print("The dataframe without schema")
> without_schema_df.show()
> cnt_with_schema=with_schema_df.count()
> print("The records count from with schema df :"+str(cnt_with_schema))
> cnt_without_schema=without_schema_df.count()
> print("The records count from without schema df: "+str(cnt_without_schema))
> {code}
> here is the outputs screen shot 111.PNG is the outputs of the code and
> inputfile.csv is the input to the code
>
--
This message was sent by Atlassian Jira
(v8.3.4#803005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]