[ https://issues.apache.org/jira/browse/SPARK-18105?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17395953#comment-17395953 ]
Cameron Todd commented on SPARK-18105: -------------------------------------- Yep I understand. I have attached my hashed data keeping the same distribution and the full_name hashed column is weak but string distance functions still work on it. So this line of code: {code:java} Dataset<Row> relevantPivots = spark.read().parquet(pathToDataDedup) .select("id", "full_name", "last_name","birthdate") .na().drop() .withColumn("pivot_hash", hash(col("last_name"),col("birthdate"))) .drop("last_name","birthdate") .repartition(5000) .cache(); // can be replaced with this Dataset<Row> relevantPivots = spark.read().parquet(pathToDataDedup).repartition(5000).cache();{code} I have also run the same code on the same hashed data and getting the same corrupted stream error. Also in case it wasn't clear my data normally sits on an s3 bucket. > LZ4 failed to decompress a stream of shuffled data > -------------------------------------------------- > > Key: SPARK-18105 > URL: https://issues.apache.org/jira/browse/SPARK-18105 > Project: Spark > Issue Type: Bug > Components: Spark Core > Affects Versions: 3.0.1, 3.1.1 > Reporter: Davies Liu > Priority: Major > Attachments: TestWeightedGraph.java > > > When lz4 is used to compress the shuffle files, it may fail to decompress it > as "stream is corrupt" > {code} > Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: > Task 92 in stage 5.0 failed 4 times, most recent failure: Lost task 92.3 in > stage 5.0 (TID 16616, 10.0.27.18): java.io.IOException: Stream is corrupted > at > org.apache.spark.io.LZ4BlockInputStream.refill(LZ4BlockInputStream.java:220) > at > org.apache.spark.io.LZ4BlockInputStream.available(LZ4BlockInputStream.java:109) > at java.io.BufferedInputStream.read(BufferedInputStream.java:353) > at java.io.DataInputStream.read(DataInputStream.java:149) > at com.google.common.io.ByteStreams.read(ByteStreams.java:828) > at com.google.common.io.ByteStreams.readFully(ByteStreams.java:695) > at > org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:127) > at > org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:110) > at scala.collection.Iterator$$anon$13.next(Iterator.scala:372) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at > org.apache.spark.util.CompletionIterator.next(CompletionIterator.scala:30) > at > org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.sort_addToSorter$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown > Source) > at > org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at > org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370) > at > org.apache.spark.sql.execution.datasources.DynamicPartitionWriterContainer.writeRows(WriterContainer.scala:397) > at > org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143) > at > org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70) > at org.apache.spark.scheduler.Task.run(Task.scala:86) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > {code} > https://github.com/jpountz/lz4-java/issues/89 -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org