[ https://issues.apache.org/jira/browse/SPARK-37604?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Guo Wei updated SPARK-37604: ---------------------------- Affects Version/s: 3.2.0 > The parameter emptyValueInRead is CSVOptions is not designed as supposed to be > ------------------------------------------------------------------------------ > > Key: SPARK-37604 > URL: https://issues.apache.org/jira/browse/SPARK-37604 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 2.4.0, 3.2.0 > Reporter: Guo Wei > Priority: Major > > For null values, the parameter nullValue can be set when reading or writing > in CSVOptions: > {code:scala} > // For writing, convert: null(dataframe) => nullValue(csv) > writerSettings.setNullValue(nullValue) > // For reading, convert: nullValue or ,,(csv) => null(dataframe) > settings.setNullValue(nullValue) > {code} > For example, a column has null values, if nullValue is set to "null" string. > {code:scala} > Seq(("Tesla", null.asInstanceOf[String])).toDF("make", > "comment").write.option("nullValue", "NULL").csv(path){code} > The saved csv file is shown as: > {noformat} > Tesla,NULL > {noformat} > and if we read this csv file with nullValue set to "null" string. > {code:java} > spark.read.option("nullValue", "NULL").csv(path) > {code} > we can get the DataFrame which data is shown as: > ||make||comment|| > |tesla|null| > {color:#57d9a3}*We can succeed to recovery it to the original > DataFrame.*{color} > > Since Spark 2.4, for empty strings, there are emptyValueInRead for reading > and emptyValueInWrite for writing that can be set in CSVOptions: > {code:scala} > // For writing, convert: ""(dataframe) => emptyValueInWrite(csv) > writerSettings.setEmptyValue(emptyValueInWrite) > // For reading, convert: "" (csv) => emptyValueInRead(dataframe) > settings.setEmptyValue(emptyValueInRead) {code} > I think the write handling is suitable, but for read handling, it supposed > to be as flows: > {code:scala} > // in asParserSettings: "" or emptyValueInWrite (csv) =>""(dataframe) > settings.setEmptyValue(emptyValueInRead) {code} > > For example, a column has empty strings, if emptyValueInWrite is set to > "EMPTY" string. > {code:scala} > Seq(("Tesla", > {code} > {color:#910091}""{color} > {code:scala} > )).toDF("make", "comment").write.option("emptyValue", "EMPTY")csv(path){code} > The saved csv file is shown as: > {noformat} > Tesla,EMPTY {noformat} > and if we read this csv file with emptyValueInRead set to "EMPTY" string. > {code:java} > spark.read.option("emptyValue", "EMPTY").csv(path) > {code} > we can get the DataFrame which data is shown as: > ||make||comment|| > |tesla|EMPTY| > but the expected DataFrame which data shoudle be shown as: > ||make||comment|| > |tesla| > {color:#de350b}*We can not recovery it to the original DataFrame.*{color} -- This message was sent by Atlassian Jira (v8.20.1#820001) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org