[ 
https://issues.apache.org/jira/browse/SPARK-38034?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

zhou xiang updated SPARK-38034:
-------------------------------
    Description: 
TransposeWindow rule will try to eliminate unnecessary shuffle:
{code:java}
/**
 * Transpose Adjacent Window Expressions.
 * - If the partition spec of the parent Window expression is compatible with 
the partition spec
 *   of the child window expression, transpose them.
 */
object TransposeWindow extends Rule[LogicalPlan] {
  private def compatiblePartitions(ps1 : Seq[Expression], ps2: 
Seq[Expression]): Boolean = {
    ps1.length < ps2.length && 
ps2.take(ps1.length).permutations.exists(ps1.zip(_).forall {
      case (l, r) => l.semanticEquals(r)
    })
  }

  private def windowsCompatible(w1: Window, w2: Window): Boolean = {
    w1.references.intersect(w2.windowOutputSet).isEmpty &&
      w1.expressions.forall(_.deterministic) &&
      w2.expressions.forall(_.deterministic) &&
      compatiblePartitions(w1.partitionSpec, w2.partitionSpec)
  }

  def apply(plan: LogicalPlan): LogicalPlan = plan.transformUpWithPruning(
    _.containsPattern(WINDOW), ruleId) {
    case w1 @ Window(_, _, _, w2 @ Window(_, _, _, grandChild))
      if windowsCompatible(w1, w2) =>
      Project(w1.output, w2.copy(child = w1.copy(child = grandChild)))

    case w1 @ Window(_, _, _, Project(pl, w2 @ Window(_, _, _, grandChild)))
      if windowsCompatible(w1, w2) && 
w1.references.subsetOf(grandChild.outputSet) =>
      Project(
        pl ++ w1.windowOutputSet,
        w2.copy(child = w1.copy(child = grandChild)))
  }
} {code}
but the function compatiblePartitions will only take the first n elements of 
the ps2 sequence, for some cases, this will not take effect, like the case 
below: 
{code:java}
val df = spark.range(10).selectExpr("id AS a", "id AS b", "id AS c", "id AS d") 
df.selectExpr(
    "sum(`d`) OVER(PARTITION BY `b`,`a`) as e", 
    "sum(`c`) OVER(PARTITION BY `a`) as f"
  ).explain

{code}
Current plan
{code:java}
== Physical Plan ==
*(5) Project [e#10L, f#11L]
+- Window [sum(c#4L) windowspecdefinition(a#2L, specifiedwindowframe(RowFrame, 
unboundedpreceding$(), unboundedfollowing$())) AS f#11L], [a#2L]
   +- *(4) Sort [a#2L ASC NULLS FIRST], false, 0
      +- Exchange hashpartitioning(a#2L, 200), true, [id=#41]
         +- *(3) Project [a#2L, c#4L, e#10L]
            +- Window [sum(d#5L) windowspecdefinition(b#3L, a#2L, 
specifiedwindowframe(RowFrame, unboundedpreceding$(), unboundedfollowing$())) 
AS e#10L], [b#3L, a#2L]
               +- *(2) Sort [b#3L ASC NULLS FIRST, a#2L ASC NULLS FIRST], 
false, 0
                  +- Exchange hashpartitioning(b#3L, a#2L, 200), true, [id=#33]
                     +- *(1) Project [id#0L AS d#5L, id#0L AS b#3L, id#0L AS 
a#2L, id#0L AS c#4L]
                        +- *(1) Range (0, 10, step=1, splits=10) {code}
Expected plan:
{code:java}
== Physical Plan ==
*(4) Project [e#924L, f#925L]
+- Window [sum(d#43L) windowspecdefinition(b#41L, a#40L, 
specifiedwindowframe(RowFrame, unboundedpreceding$(), unboundedfollowing$())) 
AS e#924L], [b#41L, a#40L]
   +- *(3) Sort [b#41L ASC NULLS FIRST, a#40L ASC NULLS FIRST], false, 0
      +- *(3) Project [d#43L, b#41L, a#40L, f#925L]
         +- Window [sum(c#42L) windowspecdefinition(a#40L, 
specifiedwindowframe(RowFrame, unboundedpreceding$(), unboundedfollowing$())) 
AS f#925L], [a#40L]
            +- *(2) Sort [a#40L ASC NULLS FIRST], false, 0
               +- Exchange hashpartitioning(a#40L, 200), true, [id=#282]
                  +- *(1) Project [id#38L AS d#43L, id#38L AS b#41L, id#38L AS 
a#40L, id#38L AS c#42L]
                     +- *(1) Range (0, 10, step=1, splits=10) {code}
 

Also the permutations method has a O(n!) time complexity, which is very 
expensive when we have many partition columns, we could try to optimize it.

  was:
 

 

 

 

 
{code:java}
val df = spark.range(10).selectExpr("id AS a", "id AS b", "id AS c", "id AS d") 
df.selectExpr(
    "sum(`d`) OVER(PARTITION BY `b`,`a`) as e", 
    "sum(`c`) OVER(PARTITION BY `a`) as f"
  ).explain

{code}
origin plan:
{code:java}
== Physical Plan ==
*(5) Project [e#10L, f#11L]
+- Window [sum(c#4L) windowspecdefinition(a#2L, specifiedwindowframe(RowFrame, 
unboundedpreceding$(), unboundedfollowing$())) AS f#11L], [a#2L]
   +- *(4) Sort [a#2L ASC NULLS FIRST], false, 0
      +- Exchange hashpartitioning(a#2L, 200), true, [id=#41]
         +- *(3) Project [a#2L, c#4L, e#10L]
            +- Window [sum(d#5L) windowspecdefinition(b#3L, a#2L, 
specifiedwindowframe(RowFrame, unboundedpreceding$(), unboundedfollowing$())) 
AS e#10L], [b#3L, a#2L]
               +- *(2) Sort [b#3L ASC NULLS FIRST, a#2L ASC NULLS FIRST], 
false, 0
                  +- Exchange hashpartitioning(b#3L, a#2L, 200), true, [id=#33]
                     +- *(1) Project [id#0L AS d#5L, id#0L AS b#3L, id#0L AS 
a#2L, id#0L AS c#4L]
                        +- *(1) Range (0, 10, step=1, splits=10) {code}
optimized plan:
{code:java}
== Physical Plan ==
*(4) Project [e#924L, f#925L]
+- Window [sum(d#43L) windowspecdefinition(b#41L, a#40L, 
specifiedwindowframe(RowFrame, unboundedpreceding$(), unboundedfollowing$())) 
AS e#924L], [b#41L, a#40L]
   +- *(3) Sort [b#41L ASC NULLS FIRST, a#40L ASC NULLS FIRST], false, 0
      +- *(3) Project [d#43L, b#41L, a#40L, f#925L]
         +- Window [sum(c#42L) windowspecdefinition(a#40L, 
specifiedwindowframe(RowFrame, unboundedpreceding$(), unboundedfollowing$())) 
AS f#925L], [a#40L]
            +- *(2) Sort [a#40L ASC NULLS FIRST], false, 0
               +- Exchange hashpartitioning(a#40L, 200), true, [id=#282]
                  +- *(1) Project [id#38L AS d#43L, id#38L AS b#41L, id#38L AS 
a#40L, id#38L AS c#42L]
                     +- *(1) Range (0, 10, step=1, splits=10) {code}
 

 

 


> Optimize time complexity and extend applicable cases for TransposeWindow 
> -------------------------------------------------------------------------
>
>                 Key: SPARK-38034
>                 URL: https://issues.apache.org/jira/browse/SPARK-38034
>             Project: Spark
>          Issue Type: Improvement
>          Components: SQL
>    Affects Versions: 3.2.0
>            Reporter: zhou xiang
>            Priority: Minor
>
> TransposeWindow rule will try to eliminate unnecessary shuffle:
> {code:java}
> /**
>  * Transpose Adjacent Window Expressions.
>  * - If the partition spec of the parent Window expression is compatible with 
> the partition spec
>  *   of the child window expression, transpose them.
>  */
> object TransposeWindow extends Rule[LogicalPlan] {
>   private def compatiblePartitions(ps1 : Seq[Expression], ps2: 
> Seq[Expression]): Boolean = {
>     ps1.length < ps2.length && 
> ps2.take(ps1.length).permutations.exists(ps1.zip(_).forall {
>       case (l, r) => l.semanticEquals(r)
>     })
>   }
>   private def windowsCompatible(w1: Window, w2: Window): Boolean = {
>     w1.references.intersect(w2.windowOutputSet).isEmpty &&
>       w1.expressions.forall(_.deterministic) &&
>       w2.expressions.forall(_.deterministic) &&
>       compatiblePartitions(w1.partitionSpec, w2.partitionSpec)
>   }
>   def apply(plan: LogicalPlan): LogicalPlan = plan.transformUpWithPruning(
>     _.containsPattern(WINDOW), ruleId) {
>     case w1 @ Window(_, _, _, w2 @ Window(_, _, _, grandChild))
>       if windowsCompatible(w1, w2) =>
>       Project(w1.output, w2.copy(child = w1.copy(child = grandChild)))
>     case w1 @ Window(_, _, _, Project(pl, w2 @ Window(_, _, _, grandChild)))
>       if windowsCompatible(w1, w2) && 
> w1.references.subsetOf(grandChild.outputSet) =>
>       Project(
>         pl ++ w1.windowOutputSet,
>         w2.copy(child = w1.copy(child = grandChild)))
>   }
> } {code}
> but the function compatiblePartitions will only take the first n elements of 
> the ps2 sequence, for some cases, this will not take effect, like the case 
> below: 
> {code:java}
> val df = spark.range(10).selectExpr("id AS a", "id AS b", "id AS c", "id AS 
> d") 
> df.selectExpr(
>     "sum(`d`) OVER(PARTITION BY `b`,`a`) as e", 
>     "sum(`c`) OVER(PARTITION BY `a`) as f"
>   ).explain
> {code}
> Current plan
> {code:java}
> == Physical Plan ==
> *(5) Project [e#10L, f#11L]
> +- Window [sum(c#4L) windowspecdefinition(a#2L, 
> specifiedwindowframe(RowFrame, unboundedpreceding$(), unboundedfollowing$())) 
> AS f#11L], [a#2L]
>    +- *(4) Sort [a#2L ASC NULLS FIRST], false, 0
>       +- Exchange hashpartitioning(a#2L, 200), true, [id=#41]
>          +- *(3) Project [a#2L, c#4L, e#10L]
>             +- Window [sum(d#5L) windowspecdefinition(b#3L, a#2L, 
> specifiedwindowframe(RowFrame, unboundedpreceding$(), unboundedfollowing$())) 
> AS e#10L], [b#3L, a#2L]
>                +- *(2) Sort [b#3L ASC NULLS FIRST, a#2L ASC NULLS FIRST], 
> false, 0
>                   +- Exchange hashpartitioning(b#3L, a#2L, 200), true, 
> [id=#33]
>                      +- *(1) Project [id#0L AS d#5L, id#0L AS b#3L, id#0L AS 
> a#2L, id#0L AS c#4L]
>                         +- *(1) Range (0, 10, step=1, splits=10) {code}
> Expected plan:
> {code:java}
> == Physical Plan ==
> *(4) Project [e#924L, f#925L]
> +- Window [sum(d#43L) windowspecdefinition(b#41L, a#40L, 
> specifiedwindowframe(RowFrame, unboundedpreceding$(), unboundedfollowing$())) 
> AS e#924L], [b#41L, a#40L]
>    +- *(3) Sort [b#41L ASC NULLS FIRST, a#40L ASC NULLS FIRST], false, 0
>       +- *(3) Project [d#43L, b#41L, a#40L, f#925L]
>          +- Window [sum(c#42L) windowspecdefinition(a#40L, 
> specifiedwindowframe(RowFrame, unboundedpreceding$(), unboundedfollowing$())) 
> AS f#925L], [a#40L]
>             +- *(2) Sort [a#40L ASC NULLS FIRST], false, 0
>                +- Exchange hashpartitioning(a#40L, 200), true, [id=#282]
>                   +- *(1) Project [id#38L AS d#43L, id#38L AS b#41L, id#38L 
> AS a#40L, id#38L AS c#42L]
>                      +- *(1) Range (0, 10, step=1, splits=10) {code}
>  
> Also the permutations method has a O(n!) time complexity, which is very 
> expensive when we have many partition columns, we could try to optimize it.



--
This message was sent by Atlassian Jira
(v8.20.1#820001)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to