Joseph K. Bradley created SPARK-6457:
----------------------------------------

             Summary: Error when calling Pyspark RandomForestModel.load
                 Key: SPARK-6457
                 URL: https://issues.apache.org/jira/browse/SPARK-6457
             Project: Spark
          Issue Type: Bug
          Components: MLlib, PySpark
    Affects Versions: 1.3.0
            Reporter: Joseph K. Bradley
            Priority: Minor


Reported by [https://github.com/catmonkeylee]

{quote}
When I run the sample code in cluster mode, there is an error.

Traceback (most recent call last):
File "/data1/s/apps/spark-app/app/sample_rf.py", line 25, in 
sameModel = RandomForestModel.load(sc, model_path)
File "/home/s/apps/spark/python/pyspark/mllib/util.py", line 254, in load
java_model = cls.load_java(sc, path)
File "/home/s/apps/spark/python/pyspark/mllib/util.py", line 250, in _load_java
return java_obj.load(sc._jsc.sc(), path)
File "/home/s/apps/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", 
line 538, in __call
File "/home/s/apps/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", 
line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling 
z:org.apache.spark.mllib.tree.model.RandomForestModel.load.
: java.lang.UnsupportedOperationException: empty collection
at org.apache.spark.rdd.RDD.first(RDD.scala:1191)
at org.apache.spark.mllib.util.Loader$.loadMetadata(modelSaveLoad.scala:125)
at 
org.apache.spark.mllib.tree.model.RandomForestModel$.load(treeEnsembleModels.scala:65)
at 
org.apache.spark.mllib.tree.model.RandomForestModel.load(treeEnsembleModels.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
{quote}

{quote}
I run the code on a spark cluster , spark version is 1.3.0

The test code:
===================================
from pyspark import SparkContext, SparkConf
from pyspark.mllib.tree import RandomForest, RandomForestModel
from pyspark.mllib.util import MLUtils

conf = SparkConf().setAppName('LocalTest')
sc = SparkContext(conf=conf)
data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt')
print data.count()
(trainingData, testData) = data.randomSplit([0.7, 0.3])
model = RandomForest.trainClassifier(trainingData, numClasses=2, 
categoricalFeaturesInfo={},
                                     numTrees=3, featureSubsetStrategy="auto",
                                     impurity='gini', maxDepth=4, maxBins=32)

# Evaluate model on test instances and compute test error
predictions = model.predict(testData.map(lambda x: x.features))
labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)
testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count() / 
float(testData.count())
print('Test Error = ' + str(testErr))
print('Learned classification forest model:')
print(model.toDebugString())

# Save and load model
_model_path = "/home/s/apps/spark-app/data/myModelPath"
model.save(sc, _model_path)
sameModel = RandomForestModel.load(sc, _model_path)
sc.stop()

===================
run command:
spark-submit --master spark://t0.q.net:7077 --executor-memory 1G sample_rf.py

======================
Then I get this error :


Traceback (most recent call last):
  File "/data1/s/apps/spark-app/app/sample_rf.py", line 25, in <module>
    sameModel = RandomForestModel.load(sc, _model_path)
  File "/home/s/apps/spark/python/pyspark/mllib/util.py", line 254, in load
    java_model = cls._load_java(sc, path)
  File "/home/s/apps/spark/python/pyspark/mllib/util.py", line 250, in 
_load_java
    return java_obj.load(sc._jsc.sc(), path)
  File 
"/home/s/apps/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", line 
538, in __call__
  File "/home/s/apps/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", 
line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling 
z:org.apache.spark.mllib.tree.model.RandomForestModel.load.
: java.lang.UnsupportedOperationException: empty collection
at org.apache.spark.rdd.RDD.first(RDD.scala:1191)
at org.apache.spark.mllib.util.Loader$.loadMetadata(modelSaveLoad.scala:125)
at 
org.apache.spark.mllib.tree.model.RandomForestModel$.load(treeEnsembleModels.scala:65)
at 
org.apache.spark.mllib.tree.model.RandomForestModel.load(treeEnsembleModels.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at 
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:207)
at java.lang.Thread.run(Thread.java:724)
{quote}




--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to