Krystian Kulig created SPARK-49261:
--------------------------------------
Summary: Correlation between lit and round during grouping
Key: SPARK-49261
URL: https://issues.apache.org/jira/browse/SPARK-49261
Project: Spark
Issue Type: Bug
Components: PySpark
Affects Versions: 3.5.0
Environment: Databricks DBR 14.3
Spark 3.5.0
Scala 2.12
Reporter: Krystian Kulig
Fix For: 3.5.0
Running following code:
{code:java}
import pyspark.sql.functions as F
from decimal import Decimal
data = [
(1, 100, Decimal("1.1"), "L", True),
(2, 200, Decimal("1.2"), "H", False),
(2, 300, Decimal("2.345"), "E", False),
]
columns = ["group_a", "id", "amount", "selector_a", "selector_b"]
df = spark.createDataFrame(data, schema=columns)
df_final = (
df.select(
F.lit(6).alias("run_number"),
F.lit("AA").alias("run_type"),
F.col("group_a"),
F.col("id"),
F.col("amount"),
F.col("selector_a"),
F.col("selector_b"),
)
.withColumn(
"amount_c",
F.when(
(F.col("selector_b") == False)
& (F.col("selector_a").isin(["L", "H", "E"])),
F.col("amount"),
).otherwise(F.lit(None))
)
.withColumn(
"count_of_amount_c",
F.when(
(F.col("selector_b") == False)
& (F.col("selector_a").isin(["L", "H", "E"])),
F.col("id")
).otherwise(F.lit(None))
)
)
group_by_cols = [
"run_number",
"group_a",
"run_type"
]
df_final = df_final.groupBy(group_by_cols).agg(
F.countDistinct("id").alias("count_of_amount"),
F.round(F.sum("amount")/ 1000, 1).alias("total_amount"),
F.sum("amount_c").alias("amount_c"),
F.countDistinct("count_of_amount_c").alias(
"count_of_amount_c"
),
)
df_final = (
df_final
.withColumn(
"total_amount",
F.round(F.col("total_amount") / 1000, 6),
)
.withColumn(
"count_of_amount", F.col("count_of_amount").cast("int")
)
.withColumn(
"count_of_amount_c",
F.when(
F.col("amount_c").isNull(), F.lit(None).cast("int")
).otherwise(F.col("count_of_amount_c").cast("int")),
)
)
df_final = df_final.select(
F.col("total_amount"),
"run_number",
"group_a",
"run_type",
"count_of_amount",
"amount_c",
"count_of_amount_c",
)
df_final.show() {code}
Produces error:
{code:java}
[[INTERNAL_ERROR](https://docs.microsoft.com/azure/databricks/error-messages/error-classes#internal_error)]
Couldn't find total_amount#1046 in
[group_a#984L,count_of_amount#1054,amount_c#1033,count_of_amount_c#1034L]
SQLSTATE: XX000 {code}
With stack trace:
{code:java}
org.apache.spark.SparkException: [INTERNAL_ERROR] Couldn't find
total_amount#1046 in
[group_a#984L,count_of_amount#1054,amount_c#1033,count_of_amount_c#1034L]
SQLSTATE: XX000 at
org.apache.spark.SparkException$.internalError(SparkException.scala:97) at
org.apache.spark.SparkException$.internalError(SparkException.scala:101) at
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:81)
at
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:74)
at
org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:505)
at
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(origin.scala:83)
at
org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:505)
at
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:481)
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:449)
at
org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:74)
at
org.apache.spark.sql.catalyst.expressions.BindReferences$.$anonfun$bindReferences$1(BoundAttribute.scala:97)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at
scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at
scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at
scala.collection.TraversableLike.map(TraversableLike.scala:286) at
scala.collection.TraversableLike.map$(TraversableLike.scala:279) at
scala.collection.AbstractTraversable.map(Traversable.scala:108) at
org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReferences(BoundAttribute.scala:97)
at
org.apache.spark.sql.execution.ProjectExec.doConsume(basicPhysicalOperators.scala:74)
at
org.apache.spark.sql.execution.CodegenSupport.consume(WholeStageCodegenExec.scala:202)
at
org.apache.spark.sql.execution.CodegenSupport.consume$(WholeStageCodegenExec.scala:155)
at
org.apache.spark.sql.execution.aggregate.HashAggregateExec.consume(HashAggregateExec.scala:51)
at
org.apache.spark.sql.execution.aggregate.HashAggregateExec.generateResultFunction(HashAggregateExec.scala:411)
at
org.apache.spark.sql.execution.aggregate.HashAggregateExec.doConsumeWithKeys(HashAggregateExec.scala:995)
at
org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doConsume(AggregateCodegenSupport.scala:81)
at
org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doConsume$(AggregateCodegenSupport.scala:77)
at
org.apache.spark.sql.execution.aggregate.HashAggregateExec.doConsume(HashAggregateExec.scala:51)
at
org.apache.spark.sql.execution.CodegenSupport.constructDoConsumeFunction(WholeStageCodegenExec.scala:229)
at
org.apache.spark.sql.execution.CodegenSupport.consume(WholeStageCodegenExec.scala:200)
at
org.apache.spark.sql.execution.CodegenSupport.consume$(WholeStageCodegenExec.scala:155)
at
org.apache.spark.sql.execution.InputAdapter.consume(WholeStageCodegenExec.scala:506)
at
org.apache.spark.sql.execution.InputRDDCodegen.doProduce(WholeStageCodegenExec.scala:493)
at
org.apache.spark.sql.execution.InputRDDCodegen.doProduce$(WholeStageCodegenExec.scala:466)
at
org.apache.spark.sql.execution.InputAdapter.doProduce(WholeStageCodegenExec.scala:506)
at
org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:100)
at
org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
at
org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381)
at
org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:95)
at
org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:94)
at
org.apache.spark.sql.execution.InputAdapter.produce(WholeStageCodegenExec.scala:506)
at
org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduceWithKeys(HashAggregateExec.scala:629)
at
org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doProduce(AggregateCodegenSupport.scala:73)
at
org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doProduce$(AggregateCodegenSupport.scala:69)
at
org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduce(HashAggregateExec.scala:51)
at
org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:100)
at
org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
at
org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381)
at
org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:95)
at
org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:94)
at
org.apache.spark.sql.execution.aggregate.HashAggregateExec.produce(HashAggregateExec.scala:51)
at
org.apache.spark.sql.execution.ProjectExec.doProduce(basicPhysicalOperators.scala:59)
at
org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:100)
at
org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
at
org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381)
at
org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:95)
at
org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:94)
at
org.apache.spark.sql.execution.ProjectExec.produce(basicPhysicalOperators.scala:46)
at
org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:666)
at
org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:729)
at
org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$2(SparkPlan.scala:327)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94) at
org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:327)
at
org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
at
org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:322) at
org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:117)
at
org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:131)
at
org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:94)
at
org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:90)
at
org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:78)
at
org.apache.spark.sql.execution.qrc.ResultCacheManager.$anonfun$computeResult$1(ResultCacheManager.scala:549)
at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94) at
org.apache.spark.sql.execution.qrc.ResultCacheManager.collectResult$1(ResultCacheManager.scala:540)
at
org.apache.spark.sql.execution.qrc.ResultCacheManager.$anonfun$computeResult$2(ResultCacheManager.scala:555)
at
org.apache.spark.sql.execution.adaptive.ResultQueryStageExec.$anonfun$doMaterialize$1(QueryStageExec.scala:663)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1175) at
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$6(SQLExecution.scala:778)
at
com.databricks.util.LexicalThreadLocal$Handle.runWith(LexicalThreadLocal.scala:63)
at
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$5(SQLExecution.scala:778)
at
com.databricks.util.LexicalThreadLocal$Handle.runWith(LexicalThreadLocal.scala:63)
at
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$4(SQLExecution.scala:778)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62) at
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$3(SQLExecution.scala:777)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62) at
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$2(SQLExecution.scala:776)
at
org.apache.spark.sql.execution.SQLExecution$.withOptimisticTransaction(SQLExecution.scala:798)
at
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$1(SQLExecution.scala:775)
at
java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.java:1604)
at
org.apache.spark.util.threads.SparkThreadLocalCapturingRunnable.$anonfun$run$1(SparkThreadLocalForwardingThreadPoolExecutor.scala:134)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at
com.databricks.spark.util.IdentityClaim$.withClaim(IdentityClaim.scala:48) at
org.apache.spark.util.threads.SparkThreadLocalCapturingHelper.$anonfun$runWithCaptured$4(SparkThreadLocalForwardingThreadPoolExecutor.scala:91)
at
com.databricks.unity.UCSEphemeralState$Handle.runWith(UCSEphemeralState.scala:45)
at
org.apache.spark.util.threads.SparkThreadLocalCapturingHelper.runWithCaptured(SparkThreadLocalForwardingThreadPoolExecutor.scala:90)
at
org.apache.spark.util.threads.SparkThreadLocalCapturingHelper.runWithCaptured$(SparkThreadLocalForwardingThreadPoolExecutor.scala:67)
at
org.apache.spark.util.threads.SparkThreadLocalCapturingRunnable.runWithCaptured(SparkThreadLocalForwardingThreadPoolExecutor.scala:131)
at
org.apache.spark.util.threads.SparkThreadLocalCapturingRunnable.run(SparkThreadLocalForwardingThreadPoolExecutor.scala:134)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
{code}
It seems to be a correlation between *F.lit(6).alias("run_number")* and
{*}F.round(F.col("total_amount") / 1000, 6){*}. If both *lit* and *scale* in
*round* are set to the same number i.e. *6* code fails.
If numbers are different all works.
Moving *F.lit(6).alias("run_number")* to the final *select* also solves the
problem when both numbers in *lit* and *scale* in *round* are the same.
Example of the working code:
{code:java}
import pyspark.sql.functions as F
from decimal import Decimal
data = [ (1, 100, Decimal("1.1"), "L", True),
(2, 200, Decimal("1.2"), "H", False),
(2, 300, Decimal("2.345"), "E", False),
]
columns = ["group_a", "id", "amount", "selector_a", "selector_b"]
df = spark.createDataFrame(data, schema=columns)
df_final = (
df.select(
F.lit(7).alias("run_number"),
F.lit("AA").alias("run_type"),
F.col("group_a"),
F.col("id"),
F.col("amount"),
F.col("selector_a"),
F.col("selector_b"),
)
.withColumn(
"amount_c",
F.when(
(F.col("selector_b") == False)
& (F.col("selector_a").isin(["L", "H", "E"])),
F.col("amount"),
).otherwise(F.lit(None))
)
.withColumn(
"count_of_amount_c",
F.when(
(F.col("selector_b") == False)
& (F.col("selector_a").isin(["L", "H", "E"])),
F.col("id")
).otherwise(F.lit(None))
)
)
group_by_cols = [
"run_number",
"group_a",
"run_type"
]
df_final = df_final.groupBy(group_by_cols).agg(
F.countDistinct("id").alias("count_of_amount"),
F.round(F.sum("amount")/ 1000, 1).alias("total_amount"),
F.sum("amount_c").alias("amount_c"),
F.countDistinct("count_of_amount_c").alias(
"count_of_amount_c"
),
)
df_final = (
df_final
.withColumn(
"total_amount",
F.round(F.col("total_amount") / 1000, 6),
)
.withColumn(
"count_of_amount", F.col("count_of_amount").cast("int")
)
.withColumn(
"count_of_amount_c",
F.when(
F.col("amount_c").isNull(), F.lit(None).cast("int")
).otherwise(F.col("count_of_amount_c").cast("int")),
)
)
df_final = df_final.select(
F.col("total_amount"),
"run_number",
"group_a",
"run_type",
"count_of_amount",
"amount_c",
"count_of_amount_c",
)
df_final.show() {code}
Output:
{code:java}
+------------+----------+-------+--------+---------------+--------------------+-----------------+
|total_amount|run_number|group_a|run_type|count_of_amount|
amount_c|count_of_amount_c|
+------------+----------+-------+--------+---------------+--------------------+-----------------+
| 0.000000| 7| 2| AA| 2|3.545000000000000000|
2|
| 0.000000| 7| 1| AA| 1| NULL|
NULL|
+------------+----------+-------+--------+---------------+--------------------+-----------------+{code}
Expected behavior:
Values used in the *lit* function shouldn't interfere with the *scale*
parameter in the *round* function
--
This message was sent by Atlassian Jira
(v8.20.10#820010)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]