Krystian Kulig created SPARK-49261:
--------------------------------------

             Summary: Correlation between lit and round during grouping
                 Key: SPARK-49261
                 URL: https://issues.apache.org/jira/browse/SPARK-49261
             Project: Spark
          Issue Type: Bug
          Components: PySpark
    Affects Versions: 3.5.0
         Environment: Databricks DBR 14.3
Spark 3.5.0
Scala 2.12
            Reporter: Krystian Kulig
             Fix For: 3.5.0


Running following code:

 
{code:java}
import pyspark.sql.functions as F
from decimal import Decimal

data = [
  (1, 100, Decimal("1.1"),  "L", True),
  (2, 200, Decimal("1.2"),  "H", False),
  (2, 300, Decimal("2.345"), "E", False),
]

columns = ["group_a", "id", "amount", "selector_a", "selector_b"]

df = spark.createDataFrame(data, schema=columns)

df_final = (
  df.select(
    F.lit(6).alias("run_number"),
    F.lit("AA").alias("run_type"),
    F.col("group_a"),
    F.col("id"),
    F.col("amount"),
    F.col("selector_a"),
    F.col("selector_b"),
  )
  .withColumn(
    "amount_c",
    F.when(
      (F.col("selector_b") == False)
      & (F.col("selector_a").isin(["L", "H", "E"])),
      F.col("amount"),
    ).otherwise(F.lit(None))
  )
  .withColumn(
    "count_of_amount_c",
    F.when(
      (F.col("selector_b") == False)
      & (F.col("selector_a").isin(["L", "H", "E"])),
      F.col("id")
    ).otherwise(F.lit(None))
  )
)

group_by_cols = [
  "run_number",
  "group_a",
  "run_type"
]

df_final = df_final.groupBy(group_by_cols).agg(
  F.countDistinct("id").alias("count_of_amount"),
  F.round(F.sum("amount")/ 1000, 1).alias("total_amount"),
  F.sum("amount_c").alias("amount_c"),
  F.countDistinct("count_of_amount_c").alias(
    "count_of_amount_c"
  ),
)

df_final = (
  df_final
  .withColumn(
    "total_amount",
    F.round(F.col("total_amount") / 1000, 6),
  )
  .withColumn(
    "count_of_amount", F.col("count_of_amount").cast("int")
  )
  .withColumn(
    "count_of_amount_c",
    F.when(
      F.col("amount_c").isNull(), F.lit(None).cast("int")
    ).otherwise(F.col("count_of_amount_c").cast("int")),
  )
)

df_final = df_final.select(
  F.col("total_amount"),
  "run_number",
  "group_a",
  "run_type",
  "count_of_amount",
  "amount_c",
  "count_of_amount_c",
)

df_final.show() {code}
Produces error:
{code:java}
[[INTERNAL_ERROR](https://docs.microsoft.com/azure/databricks/error-messages/error-classes#internal_error)]
 Couldn't find total_amount#1046 in 
[group_a#984L,count_of_amount#1054,amount_c#1033,count_of_amount_c#1034L] 
SQLSTATE: XX000 {code}
With stack trace:
{code:java}
org.apache.spark.SparkException: [INTERNAL_ERROR] Couldn't find 
total_amount#1046 in 
[group_a#984L,count_of_amount#1054,amount_c#1033,count_of_amount_c#1034L] 
SQLSTATE: XX000 at 
org.apache.spark.SparkException$.internalError(SparkException.scala:97) at 
org.apache.spark.SparkException$.internalError(SparkException.scala:101) at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:81)
 at 
org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:74)
 at 
org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:505)
 at 
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(origin.scala:83) 
at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:505)
 at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:481) 
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:449) 
at 
org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:74)
 at 
org.apache.spark.sql.catalyst.expressions.BindReferences$.$anonfun$bindReferences$1(BoundAttribute.scala:97)
 at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286) 
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at 
scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at 
scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at 
scala.collection.TraversableLike.map(TraversableLike.scala:286) at 
scala.collection.TraversableLike.map$(TraversableLike.scala:279) at 
scala.collection.AbstractTraversable.map(Traversable.scala:108) at 
org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReferences(BoundAttribute.scala:97)
 at 
org.apache.spark.sql.execution.ProjectExec.doConsume(basicPhysicalOperators.scala:74)
 at 
org.apache.spark.sql.execution.CodegenSupport.consume(WholeStageCodegenExec.scala:202)
 at 
org.apache.spark.sql.execution.CodegenSupport.consume$(WholeStageCodegenExec.scala:155)
 at 
org.apache.spark.sql.execution.aggregate.HashAggregateExec.consume(HashAggregateExec.scala:51)
 at 
org.apache.spark.sql.execution.aggregate.HashAggregateExec.generateResultFunction(HashAggregateExec.scala:411)
 at 
org.apache.spark.sql.execution.aggregate.HashAggregateExec.doConsumeWithKeys(HashAggregateExec.scala:995)
 at 
org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doConsume(AggregateCodegenSupport.scala:81)
 at 
org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doConsume$(AggregateCodegenSupport.scala:77)
 at 
org.apache.spark.sql.execution.aggregate.HashAggregateExec.doConsume(HashAggregateExec.scala:51)
 at 
org.apache.spark.sql.execution.CodegenSupport.constructDoConsumeFunction(WholeStageCodegenExec.scala:229)
 at 
org.apache.spark.sql.execution.CodegenSupport.consume(WholeStageCodegenExec.scala:200)
 at 
org.apache.spark.sql.execution.CodegenSupport.consume$(WholeStageCodegenExec.scala:155)
 at 
org.apache.spark.sql.execution.InputAdapter.consume(WholeStageCodegenExec.scala:506)
 at 
org.apache.spark.sql.execution.InputRDDCodegen.doProduce(WholeStageCodegenExec.scala:493)
 at 
org.apache.spark.sql.execution.InputRDDCodegen.doProduce$(WholeStageCodegenExec.scala:466)
 at 
org.apache.spark.sql.execution.InputAdapter.doProduce(WholeStageCodegenExec.scala:506)
 at 
org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:100)
 at 
org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
 at 
org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
 at 
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165) 
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381) 
at 
org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:95)
 at 
org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:94)
 at 
org.apache.spark.sql.execution.InputAdapter.produce(WholeStageCodegenExec.scala:506)
 at 
org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduceWithKeys(HashAggregateExec.scala:629)
 at 
org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doProduce(AggregateCodegenSupport.scala:73)
 at 
org.apache.spark.sql.execution.aggregate.AggregateCodegenSupport.doProduce$(AggregateCodegenSupport.scala:69)
 at 
org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduce(HashAggregateExec.scala:51)
 at 
org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:100)
 at 
org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
 at 
org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
 at 
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165) 
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381) 
at 
org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:95)
 at 
org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:94)
 at 
org.apache.spark.sql.execution.aggregate.HashAggregateExec.produce(HashAggregateExec.scala:51)
 at 
org.apache.spark.sql.execution.ProjectExec.doProduce(basicPhysicalOperators.scala:59)
 at 
org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:100)
 at 
org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
 at 
org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
 at 
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165) 
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381) 
at 
org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:95)
 at 
org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:94)
 at 
org.apache.spark.sql.execution.ProjectExec.produce(basicPhysicalOperators.scala:46)
 at 
org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:666)
 at 
org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:729)
 at 
org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$2(SparkPlan.scala:327)
 at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94) at 
org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:327)
 at 
org.apache.spark.sql.execution.SparkPlan$.org$apache$spark$sql$execution$SparkPlan$$withExecuteQueryLogging(SparkPlan.scala:130)
 at 
org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:385)
 at 
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:165) 
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:381) 
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:322) at 
org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:117) 
at 
org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:131) 
at 
org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:94)
 at 
org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:90)
 at 
org.apache.spark.sql.execution.qrc.InternalRowFormat$.collect(cachedSparkResults.scala:78)
 at 
org.apache.spark.sql.execution.qrc.ResultCacheManager.$anonfun$computeResult$1(ResultCacheManager.scala:549)
 at com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:94) at 
org.apache.spark.sql.execution.qrc.ResultCacheManager.collectResult$1(ResultCacheManager.scala:540)
 at 
org.apache.spark.sql.execution.qrc.ResultCacheManager.$anonfun$computeResult$2(ResultCacheManager.scala:555)
 at 
org.apache.spark.sql.execution.adaptive.ResultQueryStageExec.$anonfun$doMaterialize$1(QueryStageExec.scala:663)
 at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:1175) at 
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$6(SQLExecution.scala:778)
 at 
com.databricks.util.LexicalThreadLocal$Handle.runWith(LexicalThreadLocal.scala:63)
 at 
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$5(SQLExecution.scala:778)
 at 
com.databricks.util.LexicalThreadLocal$Handle.runWith(LexicalThreadLocal.scala:63)
 at 
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$4(SQLExecution.scala:778)
 at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62) at 
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$3(SQLExecution.scala:777)
 at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62) at 
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$2(SQLExecution.scala:776)
 at 
org.apache.spark.sql.execution.SQLExecution$.withOptimisticTransaction(SQLExecution.scala:798)
 at 
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$1(SQLExecution.scala:775)
 at 
java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.java:1604)
 at 
org.apache.spark.util.threads.SparkThreadLocalCapturingRunnable.$anonfun$run$1(SparkThreadLocalForwardingThreadPoolExecutor.scala:134)
 at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at 
com.databricks.spark.util.IdentityClaim$.withClaim(IdentityClaim.scala:48) at 
org.apache.spark.util.threads.SparkThreadLocalCapturingHelper.$anonfun$runWithCaptured$4(SparkThreadLocalForwardingThreadPoolExecutor.scala:91)
 at 
com.databricks.unity.UCSEphemeralState$Handle.runWith(UCSEphemeralState.scala:45)
 at 
org.apache.spark.util.threads.SparkThreadLocalCapturingHelper.runWithCaptured(SparkThreadLocalForwardingThreadPoolExecutor.scala:90)
 at 
org.apache.spark.util.threads.SparkThreadLocalCapturingHelper.runWithCaptured$(SparkThreadLocalForwardingThreadPoolExecutor.scala:67)
 at 
org.apache.spark.util.threads.SparkThreadLocalCapturingRunnable.runWithCaptured(SparkThreadLocalForwardingThreadPoolExecutor.scala:131)
 at 
org.apache.spark.util.threads.SparkThreadLocalCapturingRunnable.run(SparkThreadLocalForwardingThreadPoolExecutor.scala:134)
 at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) 
at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) 
at java.lang.Thread.run(Thread.java:750)
 {code}
 

It seems to be a correlation between *F.lit(6).alias("run_number")* and 
{*}F.round(F.col("total_amount") / 1000, 6){*}. If both *lit* and *scale* in 
*round* are set to the same number i.e. *6* code fails.

If numbers are different all works.

Moving *F.lit(6).alias("run_number")* to the final *select* also solves the 
problem when both numbers in *lit* and *scale* in *round* are the same.

Example of the working code:
{code:java}
import pyspark.sql.functions as F
from decimal import Decimal

data = [  (1, 100, Decimal("1.1"),  "L", True),
  (2, 200, Decimal("1.2"),  "H", False),
  (2, 300, Decimal("2.345"), "E", False),
]

columns = ["group_a", "id", "amount", "selector_a", "selector_b"]

df = spark.createDataFrame(data, schema=columns)

df_final = (
  df.select(
    F.lit(7).alias("run_number"),
    F.lit("AA").alias("run_type"),
    F.col("group_a"),
    F.col("id"),
    F.col("amount"),
    F.col("selector_a"),
    F.col("selector_b"),
  )
  .withColumn(
    "amount_c",
    F.when(
      (F.col("selector_b") == False)
      & (F.col("selector_a").isin(["L", "H", "E"])),
      F.col("amount"),
    ).otherwise(F.lit(None))
  )
  .withColumn(
    "count_of_amount_c",
    F.when(
      (F.col("selector_b") == False)
      & (F.col("selector_a").isin(["L", "H", "E"])),
      F.col("id")
    ).otherwise(F.lit(None))
  )
)

group_by_cols = [
  "run_number",
  "group_a",
  "run_type"
]

df_final = df_final.groupBy(group_by_cols).agg(
  F.countDistinct("id").alias("count_of_amount"),
  F.round(F.sum("amount")/ 1000, 1).alias("total_amount"),
  F.sum("amount_c").alias("amount_c"),
  F.countDistinct("count_of_amount_c").alias(
    "count_of_amount_c"
  ),
)

df_final = (
  df_final
  .withColumn(
    "total_amount",
    F.round(F.col("total_amount") / 1000, 6),
  )
  .withColumn(
    "count_of_amount", F.col("count_of_amount").cast("int")
  )
  .withColumn(
    "count_of_amount_c",
    F.when(
      F.col("amount_c").isNull(), F.lit(None).cast("int")
    ).otherwise(F.col("count_of_amount_c").cast("int")),
  )
)

df_final = df_final.select(
  F.col("total_amount"),
  "run_number",
  "group_a",
  "run_type",
  "count_of_amount",
  "amount_c",
  "count_of_amount_c",
)

df_final.show() {code}
Output:
{code:java}
+------------+----------+-------+--------+---------------+--------------------+-----------------+
|total_amount|run_number|group_a|run_type|count_of_amount|            
amount_c|count_of_amount_c|
+------------+----------+-------+--------+---------------+--------------------+-----------------+
|    0.000000|         7|      2|      AA|              2|3.545000000000000000| 
               2|
|    0.000000|         7|      1|      AA|              1|                NULL| 
            NULL|
+------------+----------+-------+--------+---------------+--------------------+-----------------+{code}
Expected behavior:

Values used in the *lit* function shouldn't interfere with the *scale* 
parameter in the *round* function

 

 

 



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to