[ 
https://issues.apache.org/jira/browse/SPARK-53803?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Anand updated SPARK-53803:
--------------------------
     External issue ID: https://github.com/apache/spark/pull/52519
    External issue URL: https://github.com/apache/spark/pull/52519

> Add ArimaRegression for time series forecasting in MLlib
> --------------------------------------------------------
>
>                 Key: SPARK-53803
>                 URL: https://issues.apache.org/jira/browse/SPARK-53803
>             Project: Spark
>          Issue Type: New Feature
>          Components: ML, MLlib, PySpark
>    Affects Versions: 3.5.7
>            Reporter: Anand
>            Priority: Major
>              Labels: pull-request-available
>
> The new components will implement the ARIMA (AutoRegressive Integrated Moving 
> Average) algorithm for univariate time series forecasting within the Spark ML 
> pipeline API.
> This work will include:
> - Implementation of ARIMA estimator with parameters (p, d, q)
> - A fitted model `ArimaRegressionModel` for prediction
> - Parameter support for (p, d, q) accessible from Scala and Python APIs
> - PySpark bindings under `pyspark.ml.regression`
> - Unit tests in Scala and Python for fit/transform, persistence, and predict
> - An example usage added to `examples/ml/ArimaRegressionExample.scala`



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to