Maxim Martynov created SPARK-54302:
--------------------------------------

             Summary: Filtering by isNotNull should return DataFrame with 
nullable=False
                 Key: SPARK-54302
                 URL: https://issues.apache.org/jira/browse/SPARK-54302
             Project: Spark
          Issue Type: Improvement
          Components: Spark Core
    Affects Versions: 3.5.7
            Reporter: Maxim Martynov


I have DataFrame with schema like this:
{code:python}
from pyspark.sql import SparkSession

spark = SparkSession.builder.getOrCreate()
df = spark.createDataFrame([{"a": 1},{"a": None}], schema="a:int")
df.printSchema()
"""
root
 |-- a: integer (nullable = true)
"""

df.where(df.a.isNotNull()).printSchema()
"""
root
 |-- a: integer (nullable = true)
"""
{code}

Currently filters applied to dataframe doesn't change it's schema. To make 
colum non-nullable I have to use coalesce:
{code:python}
import pyspark.sql.functions as F

df..where(df.a.isNotNull())select(F.coalesce(df.a, F.lit(0))).printSchema()
"""
root
 |-- coalesce(a, 0): integer (nullable = false)
"""
{code}

But I have to choose {{F.lit(...)}} value based on column type, even if it will 
never be used.





--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to