[ 
https://issues.apache.org/jira/browse/SPARK-55168?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

ASF GitHub Bot updated SPARK-55168:
-----------------------------------
    Labels: pull-request-available  (was: )

> Refactor GroupArrowUDFSerializer to use ArrowBatchTransformer.flatten_struct
> ----------------------------------------------------------------------------
>
>                 Key: SPARK-55168
>                 URL: https://issues.apache.org/jira/browse/SPARK-55168
>             Project: Spark
>          Issue Type: Sub-task
>          Components: PySpark
>    Affects Versions: 4.2.0
>            Reporter: Yicong Huang
>            Priority: Major
>              Labels: pull-request-available
>
> Currently, {{GroupArrowUDFSerializer.load_stream}} has an inline 
> {{process_group}} function that duplicates the flatten_struct logic already 
> extracted in {{ArrowBatchTransformer}}:
> {code:python}
> # Current code in GroupArrowUDFSerializer.load_stream (line 1021-1024)
> def process_group(batches: "Iterator[pa.RecordBatch]"):
>     for batch in batches:
>         struct = batch.column(0)
>         yield pa.RecordBatch.from_arrays(struct.flatten(), 
> schema=pa.schema(struct.type))
> {code}
> This is identical to {{ArrowBatchTransformer.flatten_struct}}. We should 
> reuse the existing transformer:
> {code:python}
> # Proposed change
> def load_stream(self, stream):
>     ...
>     if dataframes_in_group == 1:
>         batch_iter = map(ArrowBatchTransformer.flatten_struct, 
>                          ArrowStreamSerializer.load_stream(self, stream))
>         yield batch_iter
>     ...
> {code}
> This continues Phase 1 of SPARK-55159 by eliminating duplicated 
> transformation logic and improving code reuse.



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to