[ https://issues.apache.org/jira/browse/SPARK-7549?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14538965#comment-14538965 ]
Nicholas Chammas commented on SPARK-7549: ----------------------------------------- To provide a motivating example for the record (copied from my comment on SPARK-7548), consider a DataFrame that looks like this: {code} >>> a = { 'test_name': 'abracadabra', 'results': [{'time': 14.7}, {'time': 22.3}] } >>> df = sqlContext.jsonRDD(sc.parallelize([json.dumps(a)])) >>> df.printSchema() root |-- results: array (nullable = true) | |-- element: struct (containsNull = true) | | |-- time: double (nullable = true) |-- test_name: string (nullable = true) >>> print df.select('results.time').collect() [Row(time=[14.7, 22.3])] {code} It is currently not possible to aggregate over the nested {{time}} field as follows: {code} df.groupBy('test_name').avg('results.time') {code} An alternative to supporting this kind of aggregation would be to offer some way to "promote" the nested column to a top-level column, like [{{explode()}}|SPARK-7548], but the more straightforward solution is to enable aggregations on nested columns directly. > Support aggregating over nested fields > -------------------------------------- > > Key: SPARK-7549 > URL: https://issues.apache.org/jira/browse/SPARK-7549 > Project: Spark > Issue Type: Sub-task > Components: SQL > Reporter: Reynold Xin > > Would be nice to be able to run sum, avg, min, max (and other numeric > aggregate expressions) on arrays. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org