Jianshi Huang created SPARK-7937:
------------------------------------
Summary: Cannot compare Hive named_struct. (when using argmax,
argmin)
Key: SPARK-7937
URL: https://issues.apache.org/jira/browse/SPARK-7937
Project: Spark
Issue Type: Bug
Components: SQL
Affects Versions: 1.4.0
Reporter: Jianshi Huang
Imagine the following SQL:
Intention: get last used bank account country.
select bank_account_id,
max(named_struct(
'src_row_update_ts', unix_timestamp(src_row_update_ts,'yyyy/M/D HH:mm:ss'),
'bank_country', bank_country)).bank_country
from bank_account_monthly
where year_month='201502'
group by bank_account_id
=>
Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task
94 in stage 96.0 failed 4 times, most recent failure: Lost task 94.3 in stage
96.0 (TID 22281, xxxx): java.lang.RuntimeException: Type
StructType(StructField(src_row_update_ts,LongType,true),
StructField(bank_country,StringType,true)) does not support ordered operations
at scala.sys.package$.error(package.scala:27)
at
org.apache.spark.sql.catalyst.expressions.LessThan.ordering$lzycompute(predicates.scala:222)
at
org.apache.spark.sql.catalyst.expressions.LessThan.ordering(predicates.scala:215)
at
org.apache.spark.sql.catalyst.expressions.LessThan.eval(predicates.scala:235)
at
org.apache.spark.sql.catalyst.expressions.MaxFunction.update(aggregates.scala:147)
at
org.apache.spark.sql.execution.Aggregate$$anonfun$doExecute$1$$anonfun$7.apply(Aggregate.scala:165)
at
org.apache.spark.sql.execution.Aggregate$$anonfun$doExecute$1$$anonfun$7.apply(Aggregate.scala:149)
at
org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:686)
at
org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:686)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
at
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70)
at
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:724)
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]