[
https://issues.apache.org/jira/browse/SPARK-8565?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Sean Owen resolved SPARK-8565.
------------------------------
Resolution: Not A Problem
I can't find that bit of the docs but I assume it would refer to something done
by the TF-IDF process. If you count the source (or some other transformation of
the source), and then later apply TF-IDF, even if that caches something, it's
already caching a different view.
> TF-IDF drops records
> --------------------
>
> Key: SPARK-8565
> URL: https://issues.apache.org/jira/browse/SPARK-8565
> Project: Spark
> Issue Type: Bug
> Components: MLlib
> Affects Versions: 1.3.1
> Reporter: PJ Van Aeken
>
> When applying TFIDF on an RDD[Seq[String]] with 1213 records, I get an
> RDD[Vector] back with only 1204 records. This prevents me from zipping it
> with the original so I can reattach the document ids.
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]