[ https://issues.apache.org/jira/browse/SPARK-8703?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14606700#comment-14606700 ]
Feynman Liang commented on SPARK-8703: -------------------------------------- This seems to extend HashingTF by adding * a user-specified vocabulary * filtering for words above a minimum frequency * no possibility of hash collisions I agree with [~viirya] that it would be nice to reuse HashingTF if possible. > Add CountVectorizer as a ml transformer to convert document to words count > vector > --------------------------------------------------------------------------------- > > Key: SPARK-8703 > URL: https://issues.apache.org/jira/browse/SPARK-8703 > Project: Spark > Issue Type: New Feature > Components: ML > Reporter: yuhao yang > Original Estimate: 24h > Remaining Estimate: 24h > > Converts a text document to a sparse vector of token counts. Similar to > http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html > I can further add an estimator to extract vocabulary from corpus if that's > appropriate. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org