[ 
https://issues.apache.org/jira/browse/SPARK-8703?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14606700#comment-14606700
 ] 

Feynman Liang commented on SPARK-8703:
--------------------------------------

This seems to extend HashingTF by adding
 * a user-specified vocabulary
 * filtering for words above a minimum frequency
 * no possibility of hash collisions

I agree with [~viirya] that it would be nice to reuse HashingTF if possible.

> Add CountVectorizer as a ml transformer to convert document to words count 
> vector
> ---------------------------------------------------------------------------------
>
>                 Key: SPARK-8703
>                 URL: https://issues.apache.org/jira/browse/SPARK-8703
>             Project: Spark
>          Issue Type: New Feature
>          Components: ML
>            Reporter: yuhao yang
>   Original Estimate: 24h
>  Remaining Estimate: 24h
>
> Converts a text document to a sparse vector of token counts. Similar to 
> http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
> I can further add an estimator to extract vocabulary from corpus if that's 
> appropriate.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to